[CalvoZaragoza2024] Jorge Calvo-Zaragoza, Eliseo Fuentes-Martínez, Noelia Luna-Barahona, and Antonio Ríos-Vila. Can multimodal large language models read music score images? In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 4-6, Online, 2024. [ bib | DOI | http ]
[Coueasnon2024] Bertrand Coüasnon, Mathieu Giraud, Christophe Guillotel Nothmann, Aurélie Lemaitre, and Philippe Rigaux. CollabScore project - From Optical Recognition to Multimodal Music Sources. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 33-37, Online, 2024. [ bib | DOI | http ]
[Dvorak2024] Vojtěch Dvořák, Jan jr. Hajič, and Jiří Mayer. Staff Layout Analysis Using the YOLO Platform. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 18-22, Online, 2024. [ bib | DOI | http ]
[Hartelt2024] Alexander Hartelt and Frank Puppe. OMMR4all revisited - a Semiautomatic Online Editor for Medieval Music Notations. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 46-49, Online, 2024. [ bib | DOI | http ]
[Lambertye2024] Grégoire de Lambertye and Alexander Pacha. Semantic Reconstruction of Sheet Music with Graph-Neural Networks. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 12-17, Online, 2024. [ bib | DOI | http ]
[MenarguezBox2024] Aitana Menárguez-Box, Alejandro H. Tosselli, and Enrique Vidal. Enhanced User-Machine Interaction for Historical Sheet Music Retrieval: a Musical Notation Approach. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 28-32, Online, 2024. [ bib | DOI | http ]
[Repolusk2024] Tristan Repolusk and Eduardo Veas. Semi-Automatic Annotation of Chinese Suzipu Notation Using a Component-Based Prediction and Similarity Approach. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 38-42, Online, 2024. [ bib | DOI | http ]
[RiosVila2024] Antonio Ríos-Vila, Eliseo Fuentes-Martinez, and Jorge Calvo-Zaragoza. Towards Sheet Music Information Retrieval: A Unified Approach Using Multitask Transformers. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 7-11, Online, 2024. [ bib | DOI | http ]
[Tirupati2024] Nivesara Tirupati, Elona Shatri, and György Fazekas. Crafting Handwritten Notations: Towards Sheet Music Generation. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 50-56, Online, 2024. [ bib | DOI | http ]
[Torras2024] Pau Torras, Sanket Biswas, and Alicia Fornés. On Designing a Representation for the Evaluation of Optical Music Recognition Systems. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 23-27, Online, 2024. [ bib | DOI | http ]
[Umbreit2024] Janosch Umbreit and Silvana Schumann. OMR on Early Music Sources at the Bavarian State Library with MuRET - Prototyping, Automating, Scaling. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 6th International Workshop on Reading Music Systems, pages 43-45, Online, 2024. [ bib | DOI | http ]
[AlfaroContreras2023] María Alfaro-Contreras. Few-Shot Music Symbol Classification via Self-Supervised Learning and Nearest Neighbor. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 39-43, Milan, Italy, 2023. [ bib | DOI | http ]
[Castellanos2023] Francisco J. Castellanos, Antonio Javier Gallego, and Ichiro Fujinaga. A Preliminary Study of Few-shot Learning for Layout Analysis of Music Scores. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 44-48, Milan, Italy, 2023. [ bib | DOI | http ]
[Fujinaga2023] Ichiro Fujinaga and Gabriel Vigliensoni. Optical Music Recognition Workflow for Medieval Music Manuscripts. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 4-6, Milan, Italy, 2023. [ bib | DOI | http ]
[Hajic2023] Jan jr. Hajič, Petr Žabička, Jan Rychtář, Jiří Mayer, Martina Dvořáková, Filip Jebavý, Markéta Vlková, and Pavel Pecina. The OmniOMR Project. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 12-14, Milan, Italy, 2023. [ bib | DOI | http ]
[Hande2023] Pranjali Hande, Elona Shatri, Benjamin Timms, and György Fazekas. Towards Artificially Generated Handwritten Sheet Music Datasets. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 25-30, Milan, Italy, 2023. [ bib | DOI | http ]
[Havelka2023] Jonáš Havelka, Jiří Mayer, and Pavel Pecina. Symbol Generation via Autoencoders for Handwritten Music Synthesis. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 20-24, Milan, Italy, 2023. [ bib | DOI | http ]
[MartinezSevilla2023] Juan Carlos Martinez-Sevilla and Francisco J. Castellanos. Towards Music Notation and Lyrics Alignment: Gregorian Chants as Case Study. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 15-19, Milan, Italy, 2023. [ bib | DOI | http ]
[Repolusk2023] Tristan Repolusk and Eduardo Veas. The Suzipu Musical Annotation Tool for the Creation of Machine-Readable Datasets of Ancient Chinese Music. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 7-11, Milan, Italy, 2023. [ bib | DOI | http ]
[RiosVila2023] Antonio Ríos-Vila. Rotations Are All You Need: A Generic Method For End-To-End Optical Music Recognition. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 34-38, Milan, Italy, 2023. [ bib | DOI | http ]
[Zhang2023] Zihui Zhang, Elona Shatri, and György Fazekas. Improving Sheet Music Recognition using Data Augmentation and Image Enhancement. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 5th International Workshop on Reading Music Systems, pages 31-33, Milan, Italy, 2023. [ bib | DOI | http ]
[Egozy2022] Eran Egozy and Ian Clester. Computer-Assisted Measure Detection in a Music Score-Following Application. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 33-36, Online, 2022. [ bib | DOI | http ]
[GarridoMunoz2022] Carlos Garrido-Munoz, Antonio Ríos-Vila, and Jorge Calvo-Zaragoza. End-to-End Graph Prediction for Optical Music Recognition. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 25-28, Online, 2022. [ bib | DOI | http ]
[Jacquemard2022] Florent Jacquemard, Lydia Rodriguez-de la Nava, and Martin Digard. Automated Transcription of Electronic Drumkits. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 37-41, Online, 2022. [ bib | DOI | http ]
[Mayer2022] Jiří Mayer and Pavel Pecina. Obstacles with Synthesizing Training Data for OMR. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 15-19, Online, 2022. [ bib | DOI | http ]
[Moss2022] Fabian C. Moss, Néstor Nápoles López, Maik Köster, and David Rizo. Challenging sources: a new dataset for OMR of diverse 19th-century music theory examples. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 4-8, Online, 2022. [ bib | DOI | http ]
[Penarrubia2022] Carlos Penarrubia, Carlos Garrido-Muñoz, Jose J. Valero-Mas, and Jorge Calvo-Zaragoza. Efficient Approaches for Notation Assembly in Optical Music Recognition. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 29-32, Online, 2022. [ bib | DOI | http ]
[RiosVila2022] Antonio Ríos-Vila, Jose M. Iñesta, and Jorge Calvo-Zaragoza. End-To-End Full-Page Optical Music Recognition of Monophonic Documents via Score Unfolding. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 20-24, Online, 2022. [ bib | DOI | http ]
[Torras2022] Pau Torras, Arnau Baró, Lei Kang, and Alicia Fornés. Improving Handwritten Music Recognition through Language Model Integration. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, Online, 2022. [ bib | DOI | http ]
[Walwadkar2022] Dnyanesh Walwadkar, Elona Shatri, Benjamin Timms, and György Fazekas. CompIdNet: Sheet Music Composer Identification using Deep Neural Network. In Jorge Calvo-Zaragoza, Alexander Pacha, and Elona Shatri, editors, Proceedings of the 4th International Workshop on Reading Music Systems, pages 9-14, Online, 2022. [ bib | DOI | http ]
[AlfaroContreras2021] María Alfaro-Contreras, Jose J. Valero-Mas, and José Manuel Iñesta. Neural architectures for exploiting the components of Agnostic Notation in Optical Music Recognition. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 33-37, Alicante, Spain, 2021. [ bib | http ]
[Baro2021] Arnau Baró, Carles Badal, Pau Torras, and Alicia Fornés. Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 55-59, Alicante, Spain, 2021. [ bib | http ]
[Castellanos2021] Francisco J. Castellanos and Antonio-Javier Gallego. Unsupervised Neural Document Analysis for Music Score Images. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 50-54, Alicante, Spain, 2021. [ bib | http ]
[Fuente2021] Carlos de la Fuente, Jose J. Valero-Mas, Francisco J. Castellanos, and Jorge Calvo-Zaragoza. Multimodal Audio and Image Music Transcription. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 18-22, Alicante, Spain, 2021. [ bib | http ]
[Kletz2021] Marc Kletz and Alexander Pacha. Detecting Staves and Measures in Music Scores with Deep Learning. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 8-12, Alicante, Spain, 2021. [ bib | http ]
[MasCandela2021] Enrique Mas-Candela and María Alfaro-Contreras. Sequential Next-Symbol Prediction for Optical Music Recognition. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 13-17, Alicante, Spain, 2021. [ bib | http ]
[Pacha2021] Alexander Pacha. The Challenge of Reconstructing Digits in Music Scores. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 4-7, Alicante, Spain, 2021. [ bib | http ]
[RiosVila2021] Antonio Ríos-Vila, David Rizo, Jorge Calvo-Zaragoza, and José Manuel Iñesta. Completing Optical Music Recognition with Agnostic Transcription and Machine Translation. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 28-32, Alicante, Spain, 2021. [ bib | http ]
[Samiotis2021] Ioannis Petros Samiotis, Christoph Lofi, and Alessandro Bozzon. Hybrid Annotation Systems for Music Transcription. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 23-27, Alicante, Spain, 2021. [ bib | http ]
[Shatri2021] Elona Shatri and György Fazekas. DoReMi: First glance at a universal OMR dataset. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 43-49, Alicante, Spain, 2021. [ bib | http ]
[Wenzlitschke2021] Nils Wenzlitschke. Implementation and evaluation of a neural network for the recognition of handwritten melodies. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, Proceedings of the 3rd International Workshop on Reading Music Systems, pages 38-42, Alicante, Spain, 2021. [ bib | http ]
[AlfaroContreras2020] María Alfaro-Contreras, Jorge Calvo-Zaragoza, and José M. Iñesta. Reconocimiento holístico de partituras musicales. Technical report, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Spain, 2020. [ bib | .pdf ]
[Calvo-Zaragoza2020] Jorge Calvo-Zaragoza, Jan Hajič Jr., and Alexander Pacha. Understanding Optical Music Recognition. ACM Comput. Surv., 53 (4), 2020. ISSN 0360-0300. [ bib | DOI | http ]
[Castellanos2020] Francisco J. Castellanos, Antonio-Javier Gallego, and Jorge Calvo-Zaragoza. Automatic scale estimation for music score images. Expert Systems with Applications, page 113590, 2020. ISSN 0957-4174. [ bib | DOI | http ]
[Elezi2020] Ismail Elezi. Exploiting Contextual Information with Deep Neural Networks. mathesis, Ca' Foscari, University of Venice, 2020. [ bib | .pdf ]
[Henkel2020] Florian Henkel, Rainer Kelz, and Gerhard Widmer. Learning to Read and Follow Music in Complete Score Sheet Images. In Proceedings of the 21st Int. Society for Music Information Retrieval Conf., 2020. [ bib | .html ]
[Mico2020] Luisa Micó, Jose Oncina, and José M. Iñesta. Adaptively Learning to Recognize Symbols in Handwritten Early Music. In Peggy Cellier and Kurt Driessens, editors, Machine Learning and Knowledge Discovery in Databases, pages 470-477, Cham, 2020. Springer International Publishing. ISBN 978-3-030-43887-6. [ bib | DOI ]
[MuNG] Alexander Pacha and Jan Hajič jr. The Music Notation Graph (MuNG) Repository. https://github.com/OMR-Research/mung, 2020. [ bib | http ]
[Tardon2020] Lorenzo J. Tardón, Isabel Barbancho, Ana M. Barbancho, and Ichiro Fujinaga. Automatic Staff Reconstruction within SIMSSA Project. Applied Sciences, 10 (7): 2468-2484, 2020. [ bib | DOI | http ]
[Tsai2020] Timothy J. Tsai, Daniel Yang, Mengyi Shan, Thitaree Tanprasert, and Teerapat Jenrungrot. Using Cell Phone Pictures of Sheet Music To Retrieve MIDI Passages. IEEE Transactions on Multimedia, pages 1-13, 2020. [ bib | DOI | http ]
[Tuggener2020] Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, and Thilo Stadelmann. The DeepScoresV2 Dataset and Benchmark for Music Object Detection. In Proceedings of the 25th International Conference on Pattern Recognition, Milan, Italy, 2020. [ bib | DOI ]
[Wick2020] Christoph Wick and Frank Puppe. Automatic Neume Transcription of Medieval Music Manuscripts using CNN/LSTM-Networks and the segmentation-free CTC-Algorithm. Technical report, University of Würzburg, 2020. [ bib | DOI ]
[Miro2019] Jordi Burgués Miró. Recognition of musical symbols in scores using neural networks. Master's thesis, Universitat Politècnica de Catalunya, Barcelona, June 2019. [ bib | http ]
[Wick2019] Christoph Wick, Alexander Hartelt, and Frank Puppe. Staff, Symbol, and Melody Detection of Medieval Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks. May 2019a. [ bib | DOI | http ]
[Baro2019] Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza, and Alicia Fornés. From Optical Music Recognition to Handwritten Music Recognition: A baseline. Pattern Recognition Letters, 123: 1-8, 2019. ISSN 0167-8655. [ bib | DOI | http ]
[Calvo-Zaragoza2019] Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal. Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation. Pattern Analysis and Applications, Mar 2019b. ISSN 1433-755X. [ bib | DOI ]
[Calvo-Zaragoza2019a] Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha. Understanding Optical Music Recognition. Computing Research Repository, 2019a. [ bib | http ]
[Calvo-Zaragoza2019b] Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal. Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks. Pattern Recognition Letters, 128: 115-121, 2019c. ISSN 0167-8655. [ bib | DOI | http ]
[Colesnicov2019] Alexandru Colesnicov, Svetlana Cojocaru, Mihaela Luca, and Ludmila Malahov. On Digitization of Documents with Script Presentable Content. In Proceedings of the Fifth Conference of Mathematical Society of Moldova, 2019. [ bib | .pdf ]
[Eipert2019] Tim Eipert, Felix Herrman, Christoph Wick, Frank Puppe, and Andreas Haug. Editor Support for Digital Editions of Medieval Monophonic Music. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 4-7, Delft, The Netherlands, 2019. [ bib | http ]
[Goularas2019] Dionysis Goularas and Kürsat Çinar. Optical Music Recognition of the Hamparsum Notation. In 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), pages 1-7, Nov 2019. [ bib | DOI ]
[Gover2019] Matan Gover and Ichiro Fujinaga. A Notation-Based Query Language for Searching in Symbolic Music. In 6th International Conference on Digital Libraries for Musicology, DLfM ’19, pages 79-83, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450372398. [ bib | DOI | http ]
[Hajicjr.2019] Jan Hajič jr. Optical Recognition of Handwritten Music Notation. phdthesis, Charles University, Prague, 2019. [ bib ]
[Hakim2019] Dzikry Maulana Hakim and Ednawati Rainarli. Convolutional Neural Network untuk Pengenalan Citra Notasi Musik. Techno.COM, 18 (3): 214-226, 2019. ISSN 2356-2579. [ bib | DOI | http ]
[Henkel2019] Florian Henkel, Rainer Kelz, and Gerhard Widmer. Audio-Conditioned U-Net for Position Estimation in Full Sheet Images. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 8-11, Delft, The Netherlands, 2019. [ bib | http ]
[Huang2019] Zhiquing Huang, Xiang Jia, and Yifan Guo. State-of-the-Art Model for Music Object Recognition with Deep Learning. Applied Sciences, 9 (13): 2645-2665, 2019. ISSN 2076-3417. [ bib | DOI | http ]
[Inesta2019] José M. Iñesta, David Rizo, and Jorge Calvo-Zaragoza. MuRET as a software for the transcription of historical archives. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 12-15, Delft, The Netherlands, 2019. [ bib | http ]
[Ju2019] Qinjie Ju, René Chalon, and Stéphane Derrode. Assisted Music Score Reading Using Fixed-Gaze Head Movement: Empirical Experiment and Design Implications. Proc. ACM Hum.-Comput. Interact., 3 (EICS): 3:1-3:29, 2019. ISSN 2573-0142. [ bib | DOI | http ]
[Mateiu2019] Tudor Nicolae Mateiu. Unsupervised Learning for Domain Adaptation in automatic classification tasks through Neural Networks. mathesis, Universidad de Alicante, 2019. [ bib | http ]
[Mateiu2019a] Tudor N. Mateiu, Antonio-Javier Gallego, and Jorge Calvo-Zaragoza. Domain Adaptation for Handwritten Symbol Recognition: A Case of Study in Old Music Manuscripts. In Aythami Morales, Julian Fierrez, José Salvador Sánchez, and Bernardete Ribeiro, editors, Pattern Recognition and Image Analysis, pages 135-146, Cham, 2019. Springer International Publishing. ISBN 978-3-030-31321-0. [ bib | DOI ]
[Mengarelli2019] Luciano Mengarelli, Bruno Kostiuk, João G. Vitório, Maicon A. Tibola, William Wolff, and Carlos N. Silla. OMR metrics and evaluation: a systematic review. Multimedia Tools and Applications, Dec 2019. ISSN 1573-7721. [ bib | DOI ]
[Metaj2019] Stiven Metaj and Federico Magnolfi. MNR: MUSCIMA Notes Recognition. Using Faster R-CNN on handwritten music dataset. resreport, Politecnico di Milano, 2019. [ bib | DOI ]
[Noll2019] Justus Noll. Intelligentes Notenlesen. c't, 18: 122-126, 2019. [ bib | http ]
[NunezAlcover2019] Alicia Núñez Alcover. Glyph and Position Classification of Music Symbols in Early Manuscripts. mathesis, Universidad de Alicante, 2019. [ bib | http ]
[Nunez-Alcover2019] Alicia Nuñez-Alcover, Pedro J. Ponce de León, and Jorge Calvo-Zaragoza. Glyph and Position Classification of Music Symbols in Early Music Manuscripts. In Aythami Morales, Julian Fierrez, José Salvador Sánchez, and Bernardete Ribeiro, editors, Pattern Recognition and Image Analysis, pages 159-168, Cham, 2019. Springer International Publishing. ISBN 978-3-030-31321-0. [ bib | DOI ]
[OmrBibliography] Alexander Pacha. The definitive bibliography for research on Optical Music Recognition. https://omr-research.github.io, 2019a. [ bib | http ]
[Pacha2019] Alexander Pacha. Self-Learning Optical Music Recognition. phdthesis, TU Wien, 2019b. [ bib | .pdf ]
[Pacha2019a] Alexander Pacha, Jorge Calvo-Zaragoza, and Jan Hajič jr. Learning Notation Graph Construction for Full-Pipeline Optical Music Recognition. In 20th International Society for Music Information Retrieval Conference, pages 75-82, 2019. [ bib | .pdf ]
[Pacha2019b] Alexander Pacha. Incremental Supervised Staff Detection. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 16-20, Delft, The Netherlands, 2019c. [ bib | http ]
[Panadero2019] Ivan Santos Panadero. Alignment of handwritten music scores. Technical report, Universitat Autónoma de Barcelona, 2019. [ bib | .pdf ]
[Parada-Cabaleiro2019] Emilia Parada-Cabaleiro, Anton Batliner, and Björn Schuller. A Diplomatic Edition of Il Lauro Secco: Ground Truth for OMR of White Mensural Notation. In 20th International Society for Music Information Retrieval Conference, pages 557-564, Delft, The Netherlands, 2019. [ bib | .pdf ]
[Regimbal2019] Juliette Regimbal, McLennan Zoé, Gabriel Vigliensoni, Andrew Tran, and Ichiro Fujinaga. Neon2: A Verovio-based square-notation editor. In Music Encoding Conference 2019, Vienna, Austria, 2019. [ bib | .pdf ]
[Reuse2019] Timothy de Reuse and Ichiro Fujinaga. Robust Transcript Alignment on Medieval Chant Manuscripts. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 21-26, Delft, The Netherlands, 2019. [ bib | http ]
[Rios-Vila2019] Antonio Ríos-Vila, Jorge Calvo-Zaragoza, David Rizo, and José M. Iñesta. ReadSco: An Open-Source Web-Based Optical Music Recognition Tool. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 27-30, Delft, The Netherlands, 2019. [ bib | http ]
[Thomae2019] Martha E. Thomae, Julie E. Cumming, and Ichiro Fujinaga. The Mensural Scoring-up Tool. In 6th International Conference on Digital Libraries for Musicology, DLfM ’19, pages 9-19, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450372398. [ bib | DOI | http ]
[Vigliensoni2019] Gabriel Vigliensoni, Alex Daigle, Eric Liu, Jorge Calvo-Zaragoza, Juliette Regimbal, Minh Anh Nguyen, Noah Baxter, Zoé McLennan, and Ichiro Fujinaga. From image to encoding: Full optical music recognition of Medieval and Renaissance music. In Music Encoding Conference, 2019. [ bib | .pdf ]
[Waloschek2019] Simon Waloschek, Aristotelis Hadjakos, and Alexander Pacha. Identification and Cross-Document Alignment of Measures in Music Score Images. In 20th International Society for Music Information Retrieval Conference, pages 137-143, 2019. [ bib | .pdf ]
[Wick2019a] Christoph Wick, Alexander Hartelt, and Frank Puppe. Staff, Symbol and Melody Detection of Medieval Manuscripts Written in Square Notation Using Deel Fully Convolutional Networks. Applied Sciences, 9 (13): 2646-2673, 2019b. ISSN 2076-3417. [ bib | DOI | http ]
[Wick2019b] Christoph Wick and Frank Puppe. OMMR4all - a Semiautomatic Online Editor for Medieval Music Notations. In Jorge Calvo-Zaragoza and Alexander Pacha, editors, 2nd International Workshop on Reading Music Systems, pages 31-34, Delft, The Netherlands, 2019. [ bib | http ]
[Xiao2019] Zhe Xiao, Xin Chen, and Li Zhou. Real-Time Optical Music Recognition System for Dulcimer Musical Robot. Journal of Advanced Computational Intelligence and Intelligent Informatics, 23 (4): 782-790, 2019. [ bib | DOI ]
[Zalkow2019] Frank Zalkow, Angel Villar Corrales, TJ Tsai, Vlora Arifi-Müller, and Meinard Müller. Tools For Semi-Automatic Bounding Box Annotation Of Musical Measures In Sheet Music. In Late Breaking/Demo at 20th International Society for Music Information Retrieval, Delft, The Netherlands, 2019. [ bib ]
[Achankunju2018] Sanu Pulimootil Achankunju. Music Search Engine from Noisy OMR Data. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 23-24, Paris, France, 2018. [ bib | http ]
[Balke2018] Stefan Balke, Christian Dittmar, Jakob Abeßer, Klaus Frieler, Martin Pfleiderer, and Meinard Müller. Bridging the Gap: Enriching YouTube Videos with Jazz Music Annotations. Frontiers in Digital Humanities, 5: 1-11, 2018. ISSN 2297-2668. [ bib | DOI ]
[Baro2018] Arnau Baró, Pau Riba, and Alicia Fornés. A Starting Point for Handwritten Music Recognition. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 5-6, Paris, France, 2018. [ bib | http ]
[Bonnici2018] Alexandra Bonnici, Julian Abela, Nicholas Zammit, and George Azzopardi. Automatic Ornament Localisation, Recognition and Expression from Music Sheets. In ACM Symposium on Document Engineering, pages 25:1-25:11, Halifax, NS, Canada, 2018. ACM. ISBN 978-1-4503-5769-2. [ bib | DOI | http ]
[Calvo-Zaragoza2018] Jorge Calvo-Zaragoza and David Rizo. End-to-End Neural Optical Music Recognition of Monophonic Scores. Applied Sciences, 8 (4), 2018a. ISSN 2076-3417. [ bib | DOI | http ]
[Calvo-Zaragoza2018a] Jorge Calvo-Zaragoza, Francisco J. Castellanos, Gabriel Vigliensoni, and Ichiro Fujinaga. Deep Neural Networks for Document Processing of Music Score Images. Applied Sciences, 8 (5), 2018a. ISSN 2076-3417. [ bib | DOI | http ]
[Calvo-Zaragoza2018b] Jorge Calvo-Zaragoza and David Rizo. Camera-PrIMuS: Neural End-to-End Optical Music Recognition on Realistic Monophonic Scores. In 19th International Society for Music Information Retrieval Conference, pages 248-255, Paris, France, 2018b. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Calvo-Zaragoza2018c] Jorge Calvo-Zaragoza. Why WoRMS? In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 7-8, Paris, France, 2018. [ bib | http ]
[Calvo-Zaragoza2018d] Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha. Discussion Group Summary: Optical Music Recognition. In Alicia Fornés and Lamiroy Bart, editors, Graphics Recognition, Current Trends and Evolutions, Lecture Notes in Computer Science, pages 152-157. Springer International Publishing, 2018b. ISBN 978-3-030-02283-9. [ bib | DOI ]
[Calvo-Zaragoza2018e] Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal. Probabilistic Music-Symbol Spotting in Handwritten Scores. In 16th International Conference on Frontiers in Handwriting Recognition, pages 558-563, Niagara Falls, USA, 2018d. [ bib | DOI ]
[Castellanos2018] Fancisco J. Castellanos, Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Document Analysis of Music Score Images with Selectional Auto-Encoders. In 19th International Society for Music Information Retrieval Conference, pages 256-263, Paris, France, 2018. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Chen2018] Liang Chen and Christopher Raphael. Optical Music Recognition and Human-in-the-loop Computation. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 11-12, Paris, France, 2018. [ bib | http ]
[Choi2018] Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg, and Richard Zanibbi. Music Symbol Detection with Faster R-CNN Using Synthetic Annotations. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 9-10, Paris, France, 2018. [ bib | http ]
[Crawford2018] Tim Crawford, Golnaz Badkobeh, and David Lewis. Searching Page-Images of Early Music Scanned with OMR: A Scalable Solution Using Minimal Absent Words. In 19th International Society for Music Information Retrieval Conference, pages 233-239, Paris, France, 2018. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Diet2018] Jürgen Diet. Optical Music Recognition in der Bayerischen Staatsbibliothek. BIBLIOTHEK - Forschung und Praxis, 2018a. [ bib | DOI ]
[Diet2018a] Jürgen Diet. Innovative MIR Applications at the Bayerische Staatsbibliothek. In 5th International Conference on Digital Libraries for Musicology, Paris, France, 2018b. [ bib | .pdf ]
[Dorfer2018] Matthias Dorfer, Jan Hajič jr., Andreas Arzt, Harald Frostel, and Gerhard Widmer. Learning Audio-Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification. Transactions of the International Society for Music Information Retrieval, 1 (1): 22-33, 2018a. [ bib | DOI ]
[Dorfer2018a] Matthias Dorfer, Florian Henkel, and Gerhard Widmer. Learning To Listen, Read And Follow: Score Following As A Reinforcement Learning Game. In 19th International Society for Music Information Retrieval Conference, pages 784-791, Paris, France, 2018b. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Elezi2018] Ismail Elezi, Lukas Tuggener, Marcello Pelillo, and Thilo Stadelmann. DeepScores and Deep Watershed Detection: current state and open issues. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 13-14, Paris, France, 2018. [ bib | http ]
[Fornes2018] Alicia Fornés and Lamiroy Bart, editors. Graphics Recognition, Current Trends and Evolutions, volume 11009 of Lecture Notes in Computer Science, 2018. Springer International Publishing. ISBN 978-3-030-02283-9. [ bib | DOI ]
[Fujinaga2018] Ichiro Fujinaga, Andrew Hankinson, and Laurent Pugin. Automatic Score Extraction with Optical Music Recognition (OMR). In Springer Handbook of Systematic Musicology, pages 299-311. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018. ISBN 978-3-662-55004-5. [ bib | DOI ]
[Gotham2018] Mark Gotham, Peter Jonas, Bruno Bower, William Bosworth, Daniel Rootham, and Leigh VanHandel. Scores of Scores: An Openscore Project to Encode and Share Sheet Music. In 5th International Conference on Digital Libraries for Musicology, pages 87-95, Paris, France, 2018. ACM. ISBN 978-1-4503-6522-2. [ bib | DOI | http ]
[Hajicjr.2018] Jan Hajič jr., Marta Kolárová, Alexander Pacha, and Jorge Calvo-Zaragoza. How Current Optical Music Recognition Systems Are Becoming Useful for Digital Libraries. In 5th International Conference on Digital Libraries for Musicology, pages 57-61, Paris, France, 2018b. ACM. ISBN 978-1-4503-6522-2. [ bib | DOI | http ]
[Hajicjr.2018a] Jan Hajič jr., Matthias Dorfer, Gerhard Widmer, and Pavel Pecina. Towards Full-Pipeline Handwritten OMR with Musical Symbol Detection by U-Nets. In 19th International Society for Music Information Retrieval Conference, pages 225-232, Paris, France, 2018a. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Hajicjr.2018b] Jan Hajič jr. A Case for Intrinsic Evaluation of Optical Music Recognition. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 15-16, Paris, France, 2018. [ bib | http ]
[Hemmatifar2018] Ali Hemmatifar and Ashish Krishna. DeepPiano: A Deep Learning Approach to Translate Music Notation to English Alphabet. Technical report, Stanford University, 2018. [ bib | .pdf ]
[Inesta2018] José Manuel Iñesta, Pedro J. Ponce de León, David Rizo, José Oncina, Luisa Micó, Juan Ramón Rico-Juan, Carlos Pérez-Sancho, and Antonio Pertusa. HISPAMUS: Handwritten Spanish Music Heritage Preservation by Automatic Transcription. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 17-18, Paris, France, 2018. [ bib | http ]
[Konwer2018] Aishik Konwer, Ayan Kumar Bhunia, Abir Bhowmick, Ankan Kumar Bhunia, Prithaj Banerjee, Partha Pratim Roy, and Umapada Pal. Staff line Removal using Generative Adversarial Networks. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 1103-1108, Aug 2018. [ bib | DOI ]
[Li2018] Chuanzhen Li, Jiaqi Zhao, Juanjuan Cai, Hui Wang, and Huaichang Du. Optical Music Notes Recognition for Printed Music Score. In 11th International Symposium on Computational Intelligence and Design (ISCID), volume 01, pages 285-288, Dec 2018. [ bib | DOI ]
[McLeod2018] Andrew McLeod and Mark Steedman. Evaluating Automatic Polyphonic Music Transcription. In 19th International Society for Music Information Retrieval Conference, pages 42-49, Paris, France, 2018. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Mico2018] Luisa Micó, José Manuel Iñesta, and David Rizo. Incremental Learning for Recognition of Handwritten Mensural Notation. In 11th International Workshop on Machine Learning and Music, 2018. [ bib | http ]
[Moonlight] Dan Ringwalt. Moonlight. https://github.com/ringw/moonlight, 2018. [ bib | http ]
[Napoles2018] Néstor Nápoles, Gabriel Vigliensoni, and Ichiro Fujinaga. Encoding Matters. In 5th International Conference on Digital Libraries for Musicology, pages 69-73, Paris, France, 2018. ACM. ISBN 978-1-4503-6522-2. [ bib | DOI | http ]
[Niitsuma2018] Masahiro Niitsuma, Yo Tomita, Wei Qi Yan, and David Bell. Towards Musicologist-Driven Mining of Handwritten Scores. IEEE Intelligent Systems, 33 (4): 24-34, 2018. ISSN 1541-1672. [ bib | DOI ]
[OmrDatasetTools] Alexander Pacha. Documentation of the OMR Dataset Tools Python package. https://omr-datasets.readthedocs.io/en/latest, 2018a. [ bib | http ]
[OmrTutorialOnYoutube] Jorge Calvo-Zaragoza, Jan Hajič jr., Alexander Pacha, and Ichiro Fujinaga. The recording of the ISMIR Tutorial "OMR for Dummies" on YouTube. https://www.youtube.com/playlist?list=PL1jvwDVNwQke-04UxzlzY4FM33bo1CGS0, 2018c. [ bib | http ]
[Pacha2018] Alexander Pacha, Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg, Richard Zanibbi, and Horst Eidenberger. Handwritten Music Object Detection: Open Issues and Baseline Results. In 13th International Workshop on Document Analysis Systems, pages 163-168, 2018a. [ bib | DOI ]
[Pacha2018a] Alexander Pacha. Self-learning Optical Music Recognition. In Philipp Hans, Gerald Artner, Johanna Grames, Heinz Krebs, Hamid Reza Mansouri Khosravi, and Taraneh Rouhi, editors, Vienna Young Scientists Symposium, pages 34-35. TU Wien, Book-of-Abstracts.com, Heinz A. Krebs, 2018b. ISBN 978-3-9504017-8-3. ISBN: 978-3-9504017-8-3. [ bib | http ]
[Pacha2018b] Alexander Pacha and Jorge Calvo-Zaragoza. Optical Music Recognition in Mensural Notation with Region-Based Convolutional Neural Networks. In 19th International Society for Music Information Retrieval Conference, pages 240-247, Paris, France, 2018. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Pacha2018c] Alexander Pacha, Jan Hajič jr., and Jorge Calvo-Zaragoza. A Baseline for General Music Object Detection with Deep Learning. Applied Sciences, 8 (9): 1488-1508, 2018b. ISSN 2076-3417. [ bib | DOI | http ]
[Pacha2018d] Alexander Pacha. Advancing OMR as a Community: Best Practices for Reproducible Research. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 19-20, Paris, France, 2018c. [ bib | http ]
[Paeaekkoenen2018] Tuula Pääkkönen, Jukka Kervinen, and Kimmo Kettunen. Digitisation and Digital Library Presentation System - Sheet Music to the Mix. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 21-22, Paris, France, 2018. [ bib | http ]
[PhotoScore] Neuratron. PhotoScore 2018. http://www.neuratron.com/photoscore.htm, 2018. [ bib | http ]
[Rizo2018] David Rizo, Jorge Calvo-Zaragoza, and José M. Iñesta. MuRET: A Music Recognition, Encoding, and Transcription Tool. In 5th International Conference on Digital Libraries for Musicology, pages 52-56, Paris, France, 2018. ACM. ISBN 978-1-4503-6522-2. [ bib | DOI | http ]
[Roggenkemper2018] Heinz Roggenkemper and Ryan Roggenkemper. How can Machine Learning make Optical Music Recognition more relevant for practicing musicians? In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 25-26, Paris, France, 2018. [ bib | http ]
[Sotoodeh2017] Mahmood Sotoodeh, Farshad Tajeripour, Sadegh Teimori, and Kirk Jorgensen. A music symbols recognition method using pattern matching along with integrated projection and morphological operation techniques. Multimedia Tools and Applications, 77 (13): 16833-16866, 2018. ISSN 1573-7721. [ bib | DOI ]
[Tuggener2018] Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber, Marcello Pelillo, and Thilo Stadelmann. DeepScores - A Dataset for Segmentation, Detection and Classification of Tiny Objects. In 24th International Conference on Pattern Recognition, Beijing, China, 2018a. [ bib | DOI | http ]
[Tuggener2018a] Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber, and Thilo Stadelmann. Deep Watershed Detector for Music Object Recognition. In 19th International Society for Music Information Retrieval Conference, pages 271-278, Paris, France, 2018b. ISBN 978-2-9540351-2-3. [ bib | .pdf ]
[Vigliensoni2018] Gabriel Vigliensoni, Jorge Calvo-Zaragoza, and Ichiro Fujinaga. Developing an environment for teaching computers to read music. In Jorge Calvo-Zaragoza, Jan Hajič jr., and Alexander Pacha, editors, 1st International Workshop on Reading Music Systems, pages 27-28, Paris, France, 2018. [ bib | http ]
[Vo2017] Quang Nhat Vo, Guee Sang Lee, Soo Hyung Kim, and Hyung Jeong Yang. Recognition of Music Scores with Non-Linear Distortions in Mobile Devices. Multimedia Tools and Applications, 77 (12): 15951-15969, 2018. ISSN 1573-7721. [ bib | DOI ]
[Yin2018] Yu Yin, Zhenya Huang, Enhong Chen, Qi Liu, Fuzheng Zhang, Xing Xie, and Guoping Hu. Transcribing Content from Structural Images with Spotlight Mechanism. In 24th International Conference on Knowledge Discovery & Data Mining, pages 2643-2652, London, United Kingdom, 2018. ACM. ISBN 978-1-4503-5552-0. [ bib | DOI | http ]
[Baro2017] Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza, and Alicia Fornés. Optical Music Recognition by Recurrent Neural Networks. In 14th International Conference on Document Analysis and Recognition, pages 25-26, Kyoto, Japan, 2017. IEEE. [ bib | DOI ]
[Baro-Mas2017] Arnau Baró-Mas. Optical Music Recognition by Long Short-Term Memory Recurrent Neural Networks. Master's thesis, Universitat Autònoma de Barcelona, 2017. [ bib | .pdf ]
[Bountouridis2017] Dimitrios Bountouridis, Frans Wiering, Dan Brown, and Remco C. Veltkamp. Towards Polyphony Reconstruction Using Multidimensional Multiple Sequence Alignment. In João Correia, Vic Ciesielski, and Antonios Liapis, editors, Computational Intelligence in Music, Sound, Art and Design, pages 33-48, Cham, 2017. Springer International Publishing. ISBN 978-3-319-55750-2. [ bib | DOI ]
[Calvo-Zaragoza2017] Jorge Calvo-Zaragoza, Antonio Pertusa, and Jose Oncina. Staff-line detection and removal using a convolutional neural network. Machine Vision and Applications, pages 1-10, 2017b. ISSN 1432-1769. [ bib | DOI ]
[Calvo-Zaragoza2017a] Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal. Early handwritten music recognition with Hidden Markov Models. In 15th International Conference on Frontiers in Handwriting Recognition, pages 319-324. Institute of Electrical and Electronics Engineers Inc., 2017d. ISBN 9781509009817. [ bib | DOI ]
[Calvo-Zaragoza2017b] Jorge Calvo-Zaragoza, Alejandro Toselli, and Enrique Vidal. Handwritten Music Recognition for Mensural Notation: Formulation, Data and Baseline Results. In 14th International Conference on Document Analysis and Recognition, pages 1081-1086, Kyoto, Japan, 2017c. [ bib | DOI ]
[Calvo-Zaragoza2017c] Jorge Calvo-Zaragoza, Jose J. Valero-Mas, and Antonio Pertusa. End-to-end Optical Music Recognition using Neural Networks. In 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017e. ISBN 978-981-11-5179-8. [ bib | .pdf ]
[Calvo-Zaragoza2017d] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. One-step detection of background, staff lines, and symbols in medieval music manuscripts with convolutional neural networks. In 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017f. ISBN 978-981-11-5179-8. [ bib | .pdf ]
[Calvo-Zaragoza2017e] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. A machine learning framework for the categorization of elements in images of musical documents. In 3rd International Conference on Technologies for Music Notation and Representation, A Coruña, Spain, 2017g. University of A Coruña. [ bib | .pdf ]
[Calvo-Zaragoza2017f] Jorge Calvo-Zaragoza, Antonio-Javier Gallego, and Antonio Pertusa. Recognition of Handwritten Music Symbols with Convolutional Neural Codes. In 14th International Conference on Document Analysis and Recognition, pages 691-696, Kyoto, Japan, 2017a. [ bib | DOI ]
[Calvo-Zaragoza2017g] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Pixelwise classification for music document analysis. In 7th International Conference on Image Processing Theory, Tools and Applications, pages 1-6, 2017h. [ bib | DOI ]
[Calvo-Zaragoza2017h] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Pixel-wise binarization of musical documents with convolutional neural networks. In 15th International Conference on Machine Vision Applications, pages 362-365, 2017i. [ bib | DOI ]
[Calvo-Zaragoza2017i] Jorge Calvo-Zaragoza and Jose Oncina. Recognition of pen-based music notation with finite-state machines. Expert Systems with Applications, 72: 395-406, 2017. ISSN 0957-4174. [ bib | DOI ]
[Calvo-Zaragoza2017j] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Staff-Line Detection on Grayscale Images with Pixel Classification. In Luís A. Alexandre, José Salvador Sánchez, and João M. F. Rodrigues, editors, Pattern Recognition and Image Analysis, pages 279-286, Cham, 2017j. Springer International Publishing. ISBN 978-3-319-58838-4. [ bib | http ]
[Calvo-Zaragoza2017k] Jorge Calvo-Zaragoza, Ké Zhang, Zeyad Saleh, Gabriel Vigliensoni, and Ichiro Fujinaga. Music Document Layout Analysis through Machine Learning and Human Feedback. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), volume 02, pages 23-24, Nov 2017k. [ bib | DOI ]
[Chen2017] Liang Chen, Rong Jin, and Christopher Raphael. Human-Guided Recognition of Music Score Images. In 4th International Workshop on Digital Libraries for Musicology. ACM Press, 2017. [ bib | DOI ]
[Chen2017b] Liang Chen and Christopher Raphael. Renotation of Optical Music Recognition Data. In 14th Sound and Music Computing Conference, Espoo, Finland, 2017. [ bib | .pdf ]
[Choi2017] Kwon-Young Choi, Bertrand Coüasnon, Yann Ricquebourg, and Richard Zanibbi. Bootstrapping Samples of Accidentals in Dense Piano Scores for CNN-Based Detection. In 14th International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017. IAPR TC10 (Technical Committee on Graphics Recognition), IEEE Computer Society. ISBN 978-1-5386-3586-5. [ bib | DOI ]
[Gallego2017] Antonio-Javier Gallego and Jorge Calvo-Zaragoza. Staff-line removal with selectional auto-encoders. Expert Systems with Applications, 89: 138-148, 2017. ISSN 0957-4174. [ bib | DOI | http ]
[Gomez2017] Ashley Antony Gomez and C. N. Sujatha. Optical Music Recognition: Staffline Detection and Removal. International Journal of Application or Innovation in Engineering & Management, 2017. [ bib ]
[Hajicjr.2017] Jan Hajič jr. and Pavel Pecina. In Search of a Dataset for Handwritten Optical Music Recognition: Introducing MUSCIMA++. Computing Research Repository, abs/1703.04824: 1-16, 2017a. [ bib | http ]
[Hajicjr.2017a] Jan Hajič jr. and Pavel Pecina. Detecting Noteheads in Handwritten Scores with ConvNets and Bounding Box Regression. Computing Research Repository, abs/1708.01806, 2017b. [ bib | http ]
[Hajicjr.2017b] Jan Hajič jr. and Matthias Dorfer. Prototyping Full-Pipeline Optical Music Recognition with MUSCIMarker. In Extended abstracts for the Late-Breaking Demo Session of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017. [ bib | .pdf ]
[Hajicjr.2017c] Jan Hajič jr. and Pavel Pecina. Groundtruthing (Not Only) Music Notation with MUSICMarker: A Practical Overview. In 14th International Conference on Document Analysis and Recognition, pages 47-48, Kyoto, Japan, 2017c. [ bib | DOI ]
[Hajicjr.2017d] Jan Hajič jr. and Pavel Pecina. The MUSCIMA++ Dataset for Handwritten Optical Music Recognition. In 14th International Conference on Document Analysis and Recognition, pages 39-46, Kyoto, Japan, 2017d. [ bib | DOI ]
[iSeeNotes] Gear Up AB. iSeeNotes. http://www.iseenotes.com, 2017. [ bib | http ]
[Jin2017] Rong Jin. Graph-Based Rhythm Interpretation in Optical Music Recognition. PhD thesis, Indiana University, 2017. [ bib | http ]
[KompApp] Gene Ragan. KompApp. http://kompapp.com, 2017. [ bib | http ]
[Mexin2017] Yevgen Mexin, Aristotelis Hadjakos, Axel Berndt, Simon Waloschek, Anastasia Wawilow, and Gerd Szwillus. Tools for Annotating Musical Measures in Digital Music Editions. In 14th Sound and Music Computing Conference, pages 279-286, Espoo, Finland, 2017. [ bib | .pdf ]
[Montagner2017] Igor dos Santos Montagner, Nina S.T. Hirata, and Roberto Jr. Hirata. Staff removal using image operator learning. Pattern Recognition, 63: 310-320, 2017. ISSN 0031-3203. [ bib | DOI ]
[MusicScoreClassifier] Alexander Pacha. Github Repository of the Music Score Classifier. https://github.com/apacha/MusicScoreClassifier, 2017a. [ bib | http ]
[Oh2017] Jiyong Oh, Sung Joon Son, Sangkuk Lee, Ji-Won Kwon, and Nojun Kwak. Online recognition of handwritten music symbols. International Journal on Document Analysis and Recognition, 20 (2): 79-89, 2017. [ bib | DOI ]
[OmrDatasetsProject] Alexander Pacha. The OMR Datasets Project. https://apacha.github.io/OMR-Datasets, 2017b. [ bib | http ]
[Pacha2017] Alexander Pacha and Horst Eidenberger. Towards a Universal Music Symbol Classifier. In 14th International Conference on Document Analysis and Recognition, pages 35-36, Kyoto, Japan, 2017a. IAPR TC10 (Technical Committee on Graphics Recognition), IEEE Computer Society. ISBN 978-1-5386-3586-5. [ bib | DOI ]
[Pacha2017a] Alexander Pacha and Horst Eidenberger. Towards Self-Learning Optical Music Recognition. In 16th International Conference on Machine Learning and Applications, pages 795-800, 2017b. [ bib | DOI ]
[Parada-Cabaleiro2017] Emilia Parada-Cabaleiro, Anton Batliner, Alice Baird, and Björn Schuller. The SEILS Dataset: Symbolically Encoded Scores in Modern-Early Notation for Computational Musicology. In 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017. ISBN 978-981-11-5179-8. [ bib | .pdf ]
[Riba2017] Pau Riba, Alicia Fornés, and Josep Lladós. Towards the Alignment of Handwritten Music Scores. In Lins R.D. Lamiroy B., editor, Graphic Recognition. Current Trends and Challenges, Lecture Notes in Computer Science, pages 103-116. Springer Verlag, 2017. ISBN 9783319521589. [ bib | DOI ]
[RicoBlanes2017] Adrià Rico Blanes and Alicia Fornés Bisquerra. Camera-Based Optical Music Recognition Using a Convolutional Neural Network. In 14th International Conference on Document Analysis and Recognition, pages 27-28, Kyoto, Japan, 2017. IEEE. [ bib | DOI ]
[Roy2017] Partha Pratim Roy, Ayan Kumar Bhunia, and Umapada Pal. HMM-based writer identification in music score documents without staff-line removal. Expert Systems with Applications, 89: 222-240, 2017. ISSN 0957-4174. [ bib | DOI | http ]
[Saleh2017] Zeyad Saleh, Ke Zhang, Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Pixel.js: Web-Based Pixel Classification Correction Platform for Ground Truth Creation. In 14th International Conference on Document Analysis and Recognition, pages 39-40, Kyoto, Japan, 2017. [ bib | DOI ]
[Shi2017] Baoguang Shi, Xiang Bai, and Cong Yao. An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (11): 2298-2304, 2017. ISSN 0162-8828. [ bib | DOI ]
[SmartScore] Musitek. SmartScore X2. http://www.musitek.com/smartscore-pro.html, 2017. [ bib | .html ]
[Sober-Mira2017] Javier Sober-Mira, Jorge Calvo-Zaragoza, David Rizo, and José Manuel Iñesta. Pen-Based Music Document Transcription. In 14th International Conference on Document Analysis and Recognition, pages 21-22, Kyoto, Japan, 2017a. IEEE. [ bib | DOI ]
[Sober-Mira2017a] Javier Sober-Mira, Jorge Calvo-Zaragoza, David Rizo, and José Manuel Iñesta. Multimodal Recognition for Music Document Transcription. In 10th International Workshop on Machine Learning and Music, Barcelona, Spain, 2017b. [ bib | .pdf ]
[StaffPad] StaffPad Ltd. StaffPad. http://www.staffpad.net, 2017. [ bib | http ]
[Wel2017] Eelco van der Wel and Karen Ullrich. Optical Music Recognition with Convolutional Sequence-to-Sequence Models. In 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017. ISBN 978-981-11-5179-8. [ bib | .pdf ]
[Wu2017] Fu-Hai Frank Wu. Applying Machine Learning in Optical Music Recognition of Numbered Music Notation. In International Journal of Multimedia Data Engineering and Management, page 21. IGI Global, 2017. [ bib | DOI ]
[Zhang2017a] Emily H. Zhang. An Efficient Score Alignment Algorithm and its Applications. Master's thesis, Massachusetts Institute of Technology, 2017. [ bib | http ]
[Baro2016] Arnau Baró, Pau Riba, and Alicia Fornés. Towards the recognition of compound music notes in handwritten music scores. In 15th International Conference on Frontiers in Handwriting Recognition, pages 465-470. Institute of Electrical and Electronics Engineers Inc., 2016. ISBN 9781509009817. [ bib | DOI ]
[Byrd2016] Donald Byrd and Eric Isaacson. A Music Representation Requirement Specification for Academia. Technical report, Indiana University, Bloomington, 2016. [ bib | http ]
[Calvo-Zaragoza2016c] Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro Fujinaga. Document Analysis for Music Scores via Machine Learning. In 3rd International workshop on Digital Libraries for Musicology, pages 37-40, New York, USA, 2016c. ACM, ACM. ISBN 978-1-4503-4751-8. [ bib | DOI ]
[Calvo-Zaragoza2016d] Jorge Calvo-Zaragoza, David Rizo, and José Manuel Iñesta. Two (note) heads are better than one: pen-based multimodal interaction with music scores. In J. et al. Devaney, editor, 17th International Society for Music Information Retrieval Conference, pages 509-514, New York City, 2016b. ISBN 978-0-692-75506-8. [ bib | .pdf ]
[Calvo-Zaragoza2016e] Jorge Calvo-Zaragoza, Luisa Micó, and Jose Oncina. Music staff removal with supervised pixel classification. International Journal on Document Analysis and Recognition, 19 (3): 211-219, 2016a. [ bib | DOI ]
[Campos2016] Vicente Bosch Campos, Jorge Calvo-Zaragoza, Alejandro H. Toselli, and Enrique Vidal Ruiz. Sheet Music Statistical Layout Analysis. In 15th International Conference on Frontiers in Handwriting Recognition, pages 313-318, 2016. [ bib | DOI ]
[Chen2016] Liang Chen and Kun Duan. MIDI-assisted egocentric optical music recognition. In Winter Conference on Applications of Computer Vision. Institute of Electrical and Electronics Engineers Inc., 2016. ISBN 9781509006410. [ bib | DOI ]
[Chen2016a] Liang Chen and Christopher Raphael. Human-Directed Optical Music Recognition. Electronic Imaging, 2016 (17): 1-9, 2016. [ bib | DOI ]
[Chen2016b] Liang Chen, Erik Stolterman, and Christopher Raphael. Human-Interactive Optical Music Recognition. In Michael I. Mandel, Johanna Devaney, Douglas Turnbull, and George Tzanetakis, editors, 17th International Society for Music Information Retrieval Conference, pages 647-653, 2016b. ISBN 978-0-692-75506-8. [ bib | .pdf ]
[Chen2016e] Liang Chen, Rong Jin, Simo Zhang, Stefan Lee, Zhenhua Chen, and David Crandall. A Hybrid HMM-RNN Model for Optical Music Recognition. In Extended abstracts for the Late-Breaking Demo Session of the 17th International Society for Music Information Retrieval Conference, 2016a. [ bib | .pdf ]
[Dinh2016] Cong Minh Dinh, Hyung-Jeong Yang, Guee-Sang Lee, and Soo-Hyung Kim. Fast lyric area extraction from images of printed Korean music scores. IEICE Transactions on Information and Systems, E99D (6): 1576-1584, 2016. ISSN 0916-8532. [ bib | DOI ]
[Dorfer2016] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. Towards End-to-End Audio-Sheet-Music Retrieval. Computing Research Repository, abs/1612.05070, 2016a. [ bib | http ]
[Dorfer2016a] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer. Towards Score Following In Sheet Music Images. In Michael I. Mandel, Johanna Devaney, Douglas Turnbull, and George Tzanetakis, editors, 17th International Society for Music Information Retrieval Conference, pages 789-795, 2016b. ISBN 978-0-692-75506-8. [ bib | .pdf ]
[Hajicjr.2016] Jan Hajič jr., Jiří Novotný, Pavel Pecina, and Jaroslav Pokorný. Further Steps towards a Standard Testbed for Optical Music Recognition. In Michael Mandel, Johanna Devaney, Douglas Turnbull, and George Tzanetakis, editors, 17th International Society for Music Information Retrieval Conference, pages 157-163, New York, USA, 2016. New York University, New York University. ISBN 978-0-692-75506-8. [ bib | http ]
[Jastrzebska2016] Agnieszka Jastrzebska and Wojciech Lesinski. Optical Music Recognition as the Case of Imbalanced Pattern Recognition: A Study of Single Classifiers. In Andrzej M.J. Skulimowski and Janusz Kacprzyk, editors, Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions, pages 493-505, Cham, 2016. Springer International Publishing. ISBN 978-3-319-19090-7. [ bib | DOI ]
[Laplante2016] Audrey Laplante and Ichiro Fujinaga. Digitizing musical scores: Challenges and opportunities for libraries. In 3rd International Workshop on Digital Libraries for Musicology, pages 45-48. ACM, 2016. [ bib | DOI ]
[Lee2016a] Sangkuk Lee, Sung Joon Son, Jiyong Oh, and Nojun Kwak. Handwritten Music Symbol Classification Using Deep Convolutional Neural Networks. In International Conference on Information Science and Security, pages 1-5, 2016. [ bib | DOI ]
[Lehman-Borer2016] Ryerson Lehman-Borer. Optical Music Recognition. Technical report, Swarthmore College, 2016. [ bib | http ]
[Pedersoli2016] Fabrizio Pedersoli and George Tzanetakis. Document segmentation and classification into musical scores and text. International Journal on Document Analysis and Recognition, 19 (4): 289-304, 2016. ISSN 1433-2825. [ bib | DOI ]
[PinheiroPereira2016] Roberto M. Pinheiro Pereira, Caio E.F. Matos, Geraldo Jr. Braz, João D.S. de Almeida, and Anselmo C. de Paiva. A Deep Approach for Handwritten Musical Symbols Recognition. In 22nd Brazilian Symposium on Multimedia and the Web, pages 191-194, Teresina, Piau; Brazil, 2016. ACM. ISBN 978-1-4503-4512-5. [ bib | DOI ]
[PlayScore] Organum. PlayScore. http://www.playscore.co, 2016. [ bib | http ]
[Rhodes2016] Christophe Rhodes, Tim Crawford, and Mark d'Inverno. Duplicate Detection in Facsimile Scans of Early Printed Music. In Analysis of Large and Complex Data, pages 449-459. Springer International Publishing, Cham, 2016. ISBN 978-3-319-25226-1. [ bib | DOI ]
[Vo2016] Quang Nhat Vo, Soo Hyung Kim, Hyung Jeong Yang, and Gueesang Lee. An MRF model for binarization of music scores with complex background. Pattern Recognition Letters, 69: 88-95, 2016. ISSN 0167-8655. [ bib | DOI ]
[Wen2016] Cuihong Wen, Jing Zhang, Ana Rebelo, and Fanyong Cheng. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification. PLoS ONE, 11 (3): 1-11, 2016. [ bib | DOI ]
[Wu2016] Fu-Hai Frank Wu. An Evaluation Framework of Optical Music Recognition in Numbered Music Notation. In International Symposium on Multimedia, pages 626-631, 2016. [ bib | DOI ]
[Adamska2015] Julia Adamska, Mateusz Piecuch, Mateusz Podgórski, Piotr Walkiewicz, and Ewa Lukasik. Mobile System for Optical Music Recognition and Music Sound Generation. In Khalid Saeed and Wladyslaw Homenda, editors, Computer Information Systems and Industrial Management, pages 571-582, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24369-6. [ bib | DOI ]
[Balke2015] Stefan Balke, Sanu Pulimootil Achankunju, and Meinard Müller. Matching Musical Themes Based on Noisy OCR and OMR Input. In International Conference on Acoustics, Speech and Signal Processing, pages 703-707. Institute of Electrical and Electronics Engineers Inc., 2015. ISBN 9781467369978. [ bib | DOI ]
[Burgoyne2015] John Ashley Burgoyne, Ichiro Fujinaga, and J. Stephen Downie. Music Information Retrieval. In Susan Schreibman, Ray Siemens, and John Unsworth, editors, A New Companion to Digital Humanities, pages 213-228. Wiley Blackwell, 2015. ISBN 9781118680605. [ bib | DOI ]
[Byrd2015] Donald Byrd and Jakob Grue Simonsen. Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44 (3): 169-195, 2015. ISSN 0929-8215. [ bib | DOI ]
[Calvo-Zaragoza2015] Jorge Calvo-Zaragoza, Isabel Barbancho, Lorenzo J. Tardón, and Ana M. Barbancho. Avoiding staff removal stage in optical music recognition: application to scores written in white mensural notation. Pattern Analysis and Applications, 18 (4): 933-943, 2015. ISSN 1433-755X. [ bib | DOI ]
[Calvo-Zaragoza2015a] Jorge Calvo-Zaragoza and Jose Oncina. Clustering of strokes from pen-based music notation: An experimental study. Lecture Notes in Computer Science, 9117: 633-640, 2015. ISSN 0302-9743. [ bib | DOI ]
[Chen2015] Liang Chen, Rong Jin, and Christopher Raphael. Renotation from Optical Music Recognition. In Mathematics and Computation in Music, pages 16-26, Cham, 2015. Springer International Publishing. [ bib | DOI ]
[Chen2015a] Liang Chen and Christopher Raphael. Ceres: An Interactive Optical Music Recognition System. In Extended abstracts for the Late-Breaking Demo Session of the 16th International Society for Music Information Retrieval Conference, Málaga, Spain, 2015. [ bib | .pdf ]
[Fang2015] Yang Fang and Teng Gui-fa. Visual music score detection with unsupervised feature learning method based on K-means. International Journal of Machine Learning and Cybernetics, 6 (2): 277-287, 2015. ISSN 1868-8071. [ bib | DOI ]
[Huang2015] Yu-Hui Huang, Xuanli Chen, Serafina Beck, David Burn, and Luc Van Gool. Automatic Handwritten Mensural Notation Interpreter: From Manuscript to MIDI Performance. In Meinard Müller and Frans Wiering, editors, 16th International Society for Music Information Retrieval Conference, pages 79-85, Málaga, Spain, 2015. ISBN 978-84-606-8853-2. [ bib | .pdf ]
[Lesinski2015] Wojciech Lesinski and Agnieszka Jastrzebska. Optical Music Recognition: Standard and Cost-Sensitive Learning with Imbalanced Data. In IFIP International Conference on Computer Information Systems and Industrial Management, pages 601-612. Springer, 2015. [ bib | DOI ]
[Liu2015] Xiaoxiang Liu, Mi Zhou, and Peng Xu. A Robust Method for Musical Note Recognition. In 14th International Conference on Computer-Aided Design and Computer Graphics, pages 212-213. Institute of Electrical and Electronics Engineers Inc., 2015. ISBN 9781467380201. [ bib | DOI ]
[Mehta2015] Apurva A. Mehta and Malay S. Bhatt. Optical Music Notes Recognition for Printed Piano Music Score Sheet. In International Conference on Computer Communication and Informatics, Coimbatore, India, 2015. ISBN 9781479968053. [ bib | DOI ]
[Nguyen2015] Tam Nguyen and Gueesang Lee. A Lightweight and Effective Music Score Recognition on Mobile Phones. Journal of Information Processing Systems, 11 (3): 438-449, 2015. [ bib | DOI ]
[NotateMe] Neuratron. NotateMe. http://www.neuratron.com/notateme.html, 2015. [ bib | .html ]
[Novotny2015] Jiri Novotny and Jaroslav Pokorny. Introduction to Optical Music Recognition: Overview and Practical Challenges. In Pokorny J. Necasky M., Moravec P., editor, Annual International Workshop on DAtabases, TExts, Specifications and Objects, pages 65-76. CEUR-WS, 2015. [ bib | .pdf ]
[Pham2015] Viet-Khoi Pham, Hai-Dang Nguyen, and Minh-Triet Tran. Virtual Music Teacher for New Music Learners with Optical Music Recognition. In International Conference on Learning and Collaboration Technologies, pages 415-426. Springer, 2015b. [ bib | DOI ]
[Pham2015a] Van Khien Pham and Guee-Sang Lee. Music Score Recognition Based on a Collaborative Model. International Journal of Multimedia and Ubiquitous Engineering, 10 (8): 379-390, 2015. ISSN 1975-0080. [ bib | DOI ]
[Pham2015b] Viet-Khoi Pham, Hai-Dang Nguyen, Tung-Anh Nguyen-Khac, and Minh-Triet Tran. Apply lightweight recognition algorithms in optical music recognition. In 7th International Conference on Machine Vision. SPIE, 2015a. ISBN 9781628415605. [ bib | DOI ]
[Ringwalt2015] Dan Ringwalt, Roger Dannenberg, and Andrew Russell. Optical Music Recognition for Interactive Score Display. In Edgar Berdahl and Jesse T. Allison, editors, International Conference on New Interfaces for Musical Expression, pages 95-98, Baton Rouge, Louisiana, USA, 2015. The School of Music and the Center for Computation and Technology (CCT), Louisiana State University. ISBN 978-0-692-49547-6. [ bib | http ]
[Ringwalt2015a] Dan Ringwalt and Roger B. Dannenberg. Image Quality Estimation for Multi-Score OMR. In 16th International Society for Music Information Retrieval Conference, pages 17-23, 2015. ISBN 978-84-606-8853-2. [ bib | .pdf ]
[Taele2015] Paul Taele, Laura Barreto, and Tracy Hammond. Maestoso: An Intelligent Educational Sketching Tool for Learning Music Theory. In 27th Conference on Innovative Applications of Artificial Intelligence, pages 3999-4005, Austin, Texas, 2015. AAAI Press. ISBN 0-262-51129-0. [ bib | http ]
[Wen2015] Cuihong Wen, Ana Rebelo, Jing Zhang, and Jamie dos Santos Cardoso. A new optical music recognition system based on combined neural network. Pattern Recognition Letters, 58: 1-7, 2015. ISSN 0167-8655. [ bib | DOI | http ]
[Alirezazadeh2014] Fatemeh Alirezazadeh and Mohammad Reza Ahmadzadeh. Effective staff line detection, restoration and removal approach for different quality of scanned handwritten music sheets. Journal of Advanced Computer Science & Technology, 3 (2): 136-142, 2014. [ bib | DOI ]
[Bainbridge2014] David Bainbridge, Xiao Hu, and J. Stephen Downie. A Musical Progression with Greenstone: How Music Content Analysis and Linked Data is Helping Redefine the Boundaries to a Music Digital Library. In 1st International Workshop on Digital Libraries for Musicology. Association for Computing Machinery, 2014. ISBN 9781450330022. [ bib | DOI ]
[Bui2014] Hoang-Nam Bui, Iin-Seop Na, and Soo-Hyung Kim. Staff Line Removal Using Line Adjacency Graph and Staff Line Skeleton for Camera-Based Printed Music Scores. In 22nd International Conference on Pattern Recognition, pages 2787-2789, 2014. [ bib | DOI ]
[Calvo-Zaragoza2014] Jorge Calvo-Zaragoza and Jose Oncina. Recognition of Pen-Based Music Notation: The HOMUS Dataset. In 22nd International Conference on Pattern Recognition, pages 3038-3043. Institute of Electrical & Electronics Engineers (IEEE), 2014. [ bib | DOI ]
[Chanda2014] Sukalpa Chanda, Debleena Das, Umapada Pal, and Fumitaka Kimura. Offline Hand-Written Musical Symbol Recognition. 14th International Conference on Frontiers in Handwriting Recognition, pages 405-410, 2014. [ bib | DOI | http ]
[Chen2014] Gen-Fang Chen and Jia-Shing Sheu. An optical music recognition system for traditional Chinese Kunqu Opera scores written in Gong-Che Notation. EURASIP Journal on Audio, Speech, and Music Processing, 2014 (1): 7, 2014. ISSN 1687-4722. [ bib | DOI ]
[Chen2014a] Liang Chen, Rong Jin, and Christopher Raphael. Optical Music Recognition with Human Labeled Constraints. In CHI'14 Workshop on Human-Centred Machine Learning, Toronto, Canada, 2014. [ bib | .pdf ]
[Church2014] Maura Church and Michael Scott Cuthbert. Improving Rhythmic Transcriptions via Probability Models Applied Post-OMR. In Hsin-Min Wang, Yi-Hsuan Yang, and Jin Ha Lee, editors, 15th International Society for Music Information Retrieval Conference, pages 643-648, 2014. [ bib | .pdf ]
[Ding2014] Ing-Jr Ding, Chih-Ta Yen, Che-Wei Chang, and He-Zhong Lin. Optical music recognition of the singer using formant frequency estimation of vocal fold vibration and lip motion with interpolated GMM classifiers. Journal of Vibroengineering, 16 (5): 2572-2581, 2014. ISSN 1392-8716. [ bib | http ]
[Fornes2014] Alicia Fornés, Van Cuong Kieu, Muriel Visani, Nicholas Journet, and Anjan Dutta. The ICDAR/GREC 2013 Music Scores Competition: Staff Removal. In Bart Lamiroy and Jean-Marc Ogier, editors, Graphics Recognition. Current Trends and Challenges, pages 207-220, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44854-0. [ bib | http ]
[Fujinaga2014] Ichiro Fujinaga, Andrew Hankinson, and Julie E. Cumming. Introduction to SIMSSA (Single Interface for Music Score Searching and Analysis). In 1st International Workshop on Digital Libraries for Musicology, pages 1-3. ACM, 2014. [ bib | DOI ]
[Fujinaga2014a] Ichiro Fujinaga and Andrew Hankinson. SIMSSA: Single Interface for Music Score Searching and Analysis. Journal of the Japanese Society for Sonic Arts, 6 (3): 25-30, 2014. [ bib | .pdf ]
[Galea2014] Dan Gâlea, Florin Rotaru, Silviu-Ioan Bejinariu, Mihai Bulea, Dan Murgu, Simona Pescaru, Vasile Apopei, Mihaela Murgu, and Irina Rusu. A review on printed music recognition system developed in institute of computer science iasi. Technical Report Lxiv, Universitatea Tehnica Gheorghe Asachi din Iasi, 2014. [ bib | .pdf ]
[Geraud2014] Thierry Géraud. A morphological method for music score staff removal. In International Conference on Image Processing, pages 2599-2603. Institute of Electrical and Electronics Engineers Inc., 2014. ISBN 9781479957514. [ bib | DOI ]
[Han2014] Sejin Han and Gueesang Lee. Optical Music Score Recognition System for Smart Mobile Devices. International Journal of Contents, 10 (4): 63-68, 2014. [ bib | DOI ]
[Hankinson2014] Andrew Hankinson. Optical music recognition infrastructure for large-scale music document analysis. PhD thesis, McGill University, 2014. [ bib | http ]
[Helsen2014] Kate Helsen, Jennifer Bain, Ichiro Fujinaga, Andrew Hankinson, and Debra Lacoste. Optical music recognition and manuscript chant sources. Early Music, 42 (4): 555-558, 2014. [ bib | DOI ]
[Homenda2014] Wladyslaw Homenda and Wojciech Lesinski. Decision trees and their families in imbalanced pattern recognition: Recognition with and without Rejection. Lecture Notes in Computer Science, 8838: 219-230, 2014. ISSN 0302-9743. [ bib | DOI ]
[Jastrzebska2014] Agnieszka Jastrzebska and Wojciech Lesinski. Optical Music Recognition as the Case of Imbalanced Pattern Recognition: A Study of Complex Classifiers. In International Conference on Systems Science 2013, pages 325-335. Springer International Publishing, Cham, 2014. ISBN 978-3-319-01857-7. [ bib | DOI ]
[Jastrzebski2014] Krzysztof Jastrzebski. OMR for sheet music digitization. Master's thesis, Politechnika Wroclawska, 2014. [ bib | .pdf ]
[Kiriella2014] Dawpadee B. Kiriella, Shyama C. Kumari, Kavindu C. Ranasinghe, and Lakshman Jayaratne. Music Training Interface for Visually Impaired through a Novel Approach to Optical Music Recognition. GSTF Journal on Computing, 3 (4): 45, 2014. ISSN 2010-2283. [ bib | DOI ]
[Kodirov2014] Elyor Kodirov, Sejin Han, Guee-Sang Lee, and YoungChul Kim. Music with Harmony: Chord Separation and Recognition in Printed Music Score Images. In 8th International Conference on Ubiquitous Information Management and Communication, pages 1-8, Siem Reap, Cambodia, 2014. ACM. ISBN 978-1-4503-2644-5. [ bib | DOI ]
[Kusakunniran2014] Worapan Kusakunniran, Attapol Prempanichnukul, Arthid Maneesutham, Kullachut Chocksawud, Suparus Tongsamui, and Kittikhun Thongkanchorn. Optical music recognition for traditional Thai sheet music. In International Computer Science and Engineering Conference, pages 157-162. IEEE, 2014. [ bib | DOI ]
[Mehta2014] Apurva Ashokbhai Mehta and Malay S. Bhatt. Practical Issues in the Field of Optical Music Recognition. International Journal of Advance Research in Computer Science and Management Studies, 2 (1): 513-518, 2014. ISSN 2321-7782. Dubious Journal. [ bib | .pdf ]
[Montagner2014] Igor dos Santos Montagner, Roberto Jr. Hirata, and Nina S. T. Hirata. Learning to remove staff lines from music score images. In International Conference on Image Processing, pages 2614-2618, 2014a. [ bib | DOI ]
[Montagner2014a] Igor dos Santos Montagner, Roberto Jr. Hirata, and Nina S. T. Hirata. A Machine Learning based method for Staff Removal. In 22nd International Conference on Pattern Recognition, pages 3162-3167. Institute of Electrical and Electronics Engineers Inc., 2014b. ISBN 9781479952083. [ bib | DOI ]
[Ng2014] Kia Ng, Alex McLean, and Alan Marsden. Big Data Optical Music Recognition with Multi Images and Multi Recognisers. In EVA London 2014 on Electronic Visualisation and the Arts, pages 215-218. BCS, 2014. [ bib | DOI | .pdf ]
[Nguyen2014] Hong Quy Nguyen, Hyung-Jeong Yang, Soo-Hyung Kim, and Guee-Sang Lee. Automatic Touching Detection and Recognition of Music Chord Using Auto-encoding and Softmax. In 8th International Conference on Ubiquitous Information Management and Communication, Siem Reap, 2014. Association for Computing Machinery. [ bib | DOI ]
[Nhat2014] Vo Quang Nhat and GueeSang Lee. Adaptive Line Fitting for Staff Detection in Handwritten Music Score Images. In 8th International Conference on Ubiquitous Information Management and Communication, pages 991-996, Siem Reap, Cambodia, 2014. ACM. ISBN 978-1-4503-2644-5. [ bib | DOI ]
[Padilla2014] Victor Padilla, Alan Marsden, Alex McLean, and Kia Ng. Improving OMR for Digital Music Libraries with Multiple Recognisers and Multiple Sources. In 1st International Workshop on Digital Libraries for Musicology, pages 1-8, London, United Kingdom, 2014. ACM. ISBN 978-1-4503-3002-2. [ bib | DOI ]
[Ramirez2014] Carolina Ramirez and Jun Ohya. Automatic Recognition of Square Notation Symbols in Western Plainchant Manuscripts. Journal of New Music Research, 43 (4): 390-399, 2014. ISSN 0929-8215. [ bib | DOI ]
[Saitis2014] Charalampos Saitis, Andrew Hankinson, and Ichiro Fujinaga. Correcting Large-Scale OMR Data with Crowdsourcing. In 1st International Workshop on Digital Libraries for Musicology, pages 1-3. ACM, 2014. [ bib | DOI ]
[Stramer2014] Tal Stramer. Digitizing sheet music. Technical report, Stanford University, 2014. [ bib | .pdf ]
[Vo2014] Quang Nhat Vo, Tam Nguyen, Soo-Hyung Kim, Hyung-Jeong Yang, and Guee-Sang Lee. Distorted music score recognition without Staffline removal. In 22nd International Conference on Pattern Recognition, pages 2956-2960. Institute of Electrical and Electronics Engineers Inc., 2014. ISBN 9781479952083. [ bib | DOI | http ]
[Wallner2014] Matthias Wallner. A System for Optical Music Recognition and Audio Synthesis. Master's thesis, TU Wien, 2014. [ bib | .pdf ]
[Wen2014] Cuihong Wen, Ana Rebelo, Jing Zhang, and Jamie dos Santos Cardoso. Classification of optical music symbols based on combined neural network. In International Conference on Mechatronics and Control, pages 419-423, 2014. [ bib | DOI ]
[Chen2013] Yung-Sheng Chen, Feng-Sheng Chen, and Chin-Hung Teng. An Optical Music Recognition System for Skew or Inverted Musical Scores. International Journal of Pattern Recognition and Artificial Intelligence, 27 (07), 2013. [ bib | DOI ]
[Fornes2013] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós. The 2012 Music Scores Competitions: Staff Removal and Writer Identification. In Young-Bin Kwon and Jean-Marc Ogier, editors, Graphics Recognition. New Trends and Challenges, pages 173-186, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-36824-0. [ bib | DOI ]
[Gordo2013] Albert Gordo, Alicia Fornés, and Ernest Valveny. Writer identification in handwritten musical scores with bags of notes. Pattern Recognition, 46 (5): 1337-1345, 2013. ISSN 0031-3203. [ bib | DOI | http ]
[Hankinson2013] Andrew Hankinson and Ichiro Fujinaga. Using optical music recognition to navigate and retrieve music documents. In Conference of the International Association of Music Libraries, Vienna, Austria, 2013. [ bib | .pdf ]
[Malik2013] Rakesh Malik, Partha Pratim Roy, Umapada Pal, and Fumitaka Kimura. Handwritten Musical Document Retrieval Using Music-Score Spotting. In 12th International Conference on Document Analysis and Recognition, pages 832-836, 2013. [ bib | DOI ]
[Pugin2013] Laurent Pugin and Tim Crawford. Evaluating OMR on the Early Music Online Collection. In Alceu de Souza Britto Jr., Fabien Gouyon, and Simon Dixon, editors, 14th International Society for Music Information Retrieval Conference, pages 439-444, Curitiba, Brazil, 2013. [ bib | .pdf ]
[Raphael2013] Christopher Raphael and Rong Jin. Optical music recognition on the international music score library project. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2013. [ bib | DOI ]
[Rebelo2013] Ana Rebelo, André Marçal, and Jamie dos Santos Cardoso. Global constraints for syntactic consistency in OMR: an ongoing approach. In International Conference on Image Analysis and Recognition, 2013. [ bib | .pdf ]
[Rebelo2013a] Ana Rebelo and Jamie dos Santos Cardoso. Staff Line Detection and Removal in the Grayscale Domain. In 12th International Conference on Document Analysis and Recognition, pages 57-61, 2013. [ bib | DOI ]
[Sapp2013] Craig Sapp. OMR Comparison of SmartScore and SharpEye. https://ccrma.stanford.edu/~craig/mro-compare-beethoven, 2013. [ bib | http ]
[Silva2013] Rui Miguel Filipe da Silva. Mobile framework for recognition of musical characters. Master's thesis, Universidade do Porto, 2013. [ bib | .pdf ]
[Tambouratzis2013] Tatiana Tambouratzis. The Digital Music Stand as a Minimal Processing Custom-Made Optical Music Recognition System, Part 1: Key Music Symbol Recognition. International Journal of Intelligent Systems, 28 (5): 474-504, 2013. ISSN 0884-8173. [ bib | DOI ]
[Timofte2013] Radu Timofte and Luc Van Gool. Automatic Stave Discovery for Musical Facsimiles. In Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, and Zhanyi Hu, editors, Computer Vision - ACCV 2012, pages 510-523, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37447-0. [ bib | DOI ]
[Vigliensoni2013] Gabriel Vigliensoni, Gregory Burlet, and Ichiro Fujinaga. Optical measure recognition in common music notation. In 14th International Society for Music Information Retrieval Conference, Curitiba, Brazil, 2013. [ bib | .pdf ]
[Visaniy2013] Muriel Visaniy, V.C. Kieu, Alicia Fornés, and Nicholas Journet. The ICDAR 2013 Music Scores Competition: Staff Removal. In 12th International Conference on Document Analysis and Recognition, pages 1407-1411, 2013. [ bib | DOI ]
[Witt2013] Carl Witt. Optical Music Recognition Symbol Detection using Contour Traces, 2013. [ bib ]
[Baba2012] Tetsuaki Baba, Yuya Kikukawa, Toshiki Yoshiike, Tatsuhiko Suzuki, Rika Shoji, Kumiko Kushiyama, and Makoto Aoki. Gocen: A Handwritten Notational Interface for Musical Performance and Learning Music. In ACM SIGGRAPH 2012 Emerging Technologies, pages 9-9, New York, USA, 2012. ACM. ISBN 978-1-4503-1680-4. [ bib | DOI ]
[Burlet2012] Gregory Burlet, Alastair Porter, Andrew Hankinson, and Ichiro Fujinaga. Neon.js: Neume Editor Online. In 13th International Society for Music Information Retrieval Conference, pages 121-126, Porto, Portugal, 2012. [ bib | .pdf ]
[Fornes2012] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós. CVC-MUSCIMA: A Ground-truth of Handwritten Music Score Images for Writer Identification and Staff Removal. International Journal on Document Analysis and Recognition, 15 (3): 243-251, 2012. ISSN 1433-2825. [ bib | DOI ]
[Hankinson2012] Andrew Hankinson, John Ashley Burgoyne, Gabriel Vigliensoni, Alastair Porter, Jessica Thompson, Wendy Liu, Remi Chiu, and Ichiro Fujinaga. Digital Document Image Retrieval Using Optical Music Recognition. In Fabien Gouyon, Perfecto Herrera, Luis Gustavo Martins, and Meinard Müller, editors, 13th International Society for Music Information Retrieval Conference, pages 577-582, 2012b. [ bib | .pdf ]
[Hankinson2012a] Andrew Hankinson, John Ashley Burgoyne, Gabriel Vigliensoni, and Ichiro Fujinaga. Creating a Large-scale Searchable Digital Collection from Printed Music Materials. In 21st International Conference on World Wide Web, pages 903-908, Lyon, France, 2012a. ACM. ISBN 978-1-4503-1230-1. [ bib | DOI ]
[Hankinson2012b] Andrew Hankinson and Ichiro Fujinaga. SIMSSA: Single Interface for Music Score Searching and Analysis. In Conference of the International Association of Music Libraries, Montréal, QC, 2012. [ bib | .pdf ]
[Hankinson2012c] Andrew Hankinson. Optical Music Recognition Bibliography. http://ddmal.music.mcgill.ca/research/omr/omr_bibliography, 2012. [ bib | http ]
[Jin2012] Rong Jin and Christopher Raphael. Interpreting Rhythm in Optical Music Recognition. In Fabien Gouyon, Perfecto Herrera, Luis Gustavo Martins, and Meinard Müller, editors, 13th International Society for Music Information Retrieval Conference, pages 151-156, Porto, Portugal, 2012. [ bib | .pdf ]
[Liu2012] Xiaoxiang Liu. Note Symbol Recognition for Music Scores. In Jeng-Shyang Pan, Shyi-Ming Chen, and Ngoc Thanh Nguyen, editors, Intelligent Information and Database Systems, pages 263-273, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-28490-8. [ bib | http ]
[Low2012] Grady Low and Yung-Ho Chang. Optical Music Recognition Application, 2012. [ bib | .pdf ]
[Luangnapa2012] Nawapon Luangnapa, Thongchai Silpavarangkura, Chakarida Nukoolkit, and Pornchai Mongkolnam. Optical Music Recognition on Android Platform. In International Conference on Advances in Information Technology, pages 106-115. Springer, 2012. [ bib | DOI ]
[Rebelo2012] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, Andre R.S. Marcal, Carlos Guedes, and Jamie dos Santos Cardoso. Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1 (3): 173-190, 2012. [ bib | DOI ]
[Rebelo2012a] Ana Rebelo. Robust Optical Recognition of Handwritten Musical Scores based on Domain Knowledge. PhD thesis, University of Porto, 2012. [ bib | .pdf ]
[Sebastien2012] Véronique Sébastien, Henri Ralambondrainy, Olivier Sébastien, and Noël Conruyt. Score Analyzer: Automatically Determining Scores Difficulty Level for Instrumental e-Learning. In Fabien Gouyon, Perfecto Herrera, Luis Gustavo Martins, and Meinard Müller, editors, 13th International Society for Music Information Retrieval Conference, pages 571-576, Porto, Portugal, 2012. [ bib | .pdf ]
[Su2012] Bolan Su, Shijian Lu, Umapada Pal, and Chew Lim Tan. An effective staff detection and removal technique for musical documents. In 10th International Workshop on Document Analysis Systems, pages 160-164. IEEE, 2012. ISBN 9780769546612. [ bib | DOI ]
[Tsandilas2012] Theophanis Tsandilas. Interpreting Strokes on Paper with a Mobile Assistant. In 25th Annual ACM Symposium on User Interface Software and Technology, pages 299-308, Cambridge, Massachusetts, USA, 2012. ACM. ISBN 978-1-4503-1580-7. [ bib | DOI ]
[Vidal2012] Vitor Hugo Couto Vidal. Optical Music Recognition in the grey-scale domain. Technical report, Universidade do Porto, 2012. [ bib | .pdf ]
[Yin-xian2012] Yang Yin-xian and Yang Ding-li. Staff Line Removal Algorithm Based on Trajectory Tracking and Topological Structure of Score. In 4th International Conference on Computer Modeling and Simulation, 2012. [ bib ]
[Bugge2011] Esben Paul Bugge, Kim Lundsteen Juncher, Brian Soborg Mathiasen, and Jakob Grue Simonsen. Using Sequence Alignment and Voting To Improve Optical Music Recognition From Multiple Recognizers. In 12th International Society for Music Information Retrieval Conference, pages 405-410, 2011. ISBN 9780615548654. [ bib | .pdf ]
[Fornes2011] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Llados. The ICDAR 2011 Music Scores Competition: Staff Removal and Writer Identification. In International Conference on Document Analysis and Recognition, pages 1511-1515, 2011. [ bib | DOI ]
[Min2011] Du Min. Research on numbered musical notation recognition and performance in a intelligent system. In International Conference on Business Management and Electronic Information, pages 340-343, 2011. [ bib | DOI ]
[Pinto2011] Telmo Pinto, Ana Rebelo, Gilson Giraldi, and Jamie dos Santos Cardoso. Music Score Binarization Based on Domain Knowledge. In Jordi Vitrià, João Miguel Sanches, and Mario Hernández, editors, Pattern Recognition and Image Analysis, pages 700-708. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21257-4. [ bib | DOI ]
[Raphael2011] Christopher Raphael. Optical Music Recognition on the IMSLP. Technical report, Indiana University, Bloomington, 2011. [ bib ]
[Raphael2011a] Christopher Raphael and Jingya Wang. New Approaches to Optical Music Recognition. In Anssi Klapuri and Colby Leider, editors, 12th International Society for Music Information Retrieval Conference, pages 305-310, Miami, Florida, 2011. University of Miami. [ bib | .pdf ]
[Rebelo2011] Ana Rebelo, Jakub Tkaczuk, Sousa Sousa, and Jamie dos Santos Cardoso. Metric Learning for Music Symbol Recognition. In 10th International Conference on Machine Learning and Applications and Workshops, pages 106-111, 2011b. [ bib | DOI ]
[Rebelo2011a] Ana Rebelo, Filipe Paszkiewicz, Carlos Guedes, Andre R. S. Marcal, and Jamie dos Santos Cardoso. A Method for Music Symbols Extraction based on Musical Rules. In Bridges 2011: Mathematics, Music, Art, Architecture, Culture, pages 81-88, 2011a. ISBN 098460426X. [ bib | .pdf ]
[Tambouratzis2011] Tatiana Tambouratzis. Identification of key music symbols for optical music recognition and on-screen presentation. In International Joint Conference on Neural Networks, pages 1935-1942, 2011. [ bib | DOI ]
[Thompson2011] Jessica Thompson, Andrew Hankinson, and Ichiro Fujinaga. Searching the Liber Usualis: Using CouchDB and ElasticSearch to Query Graphical Music Documents. In 12th International Society for Music Information Retrieval Conference, 2011. [ bib | .pdf ]
[Vigliensoni2011] Gabriel Vigliensoni, John Ashley Burgoyne, Andrew Hankinson, and Ichiro Fujinaga. Automatic Pitch Detection in Printed Square Notation. In Anssi Klapuri and Colby Leider, editors, 12th International Society for Music Information Retrieval Conference, pages 423-428, Miami, Florida, 2011. University of Miami. [ bib | .pdf ]
[Viro2011] Vladimir Viro. Peachnote: Music Score Search and Analysis Platform. In 12th International Society for Music Information Retrieval Conference, pages 359-362, Miami, FL, 2011. [ bib | .pdf ]
[Byrd2010] Donald Byrd, William Guerin, Megan Schindele, and Ian Knopke. OMR Evaluation and Prospects for Improved OMR via Multiple Recognizers. Technical report, Indiana University, Bloomington, IN, USA, 2010. [ bib | http ]
[Dutta2010] Anjan Dutta, Umapada Pal, Alicia Fornés, and Josep Llados. An Efficient Staff Removal Approach from Printed Musical Documents. In 20th International Conference on Pattern Recognition, pages 1965-1968, 2010. [ bib | DOI ]
[Gozzi2010] Gianmarco Gozzi. OMRJX: A framework for piano scores optical music recognition. Master's thesis, Politecnico di Milano, 2010. [ bib | .pdf ]
[Hankinson2010] Andrew Hankinson, Laurent Pugin, and Ichiro Fujinaga. An Interchange Format for Optical Music Recognition Applications. In 11th International Society for Music Information Retrieval Conference, pages 51-56, Utrecht, The Netherlands, 2010. [ bib | .pdf ]
[Pinto2010] Telmo Pinto, Ana Rebelo, Gilson Giraldi, and Jamie dos Santos Cardoso. Content Aware Music Score Binarization. Technical report, Universidade do Porto, Portugal, 2010. [ bib | .pdf ]
[Rebelo2010] Ana Rebelo, G. Capela, and Jamie dos Santos Cardoso. Optical recognition of music symbols. International Journal on Document Analysis and Recognition, 13 (1): 19-31, 2010. ISSN 1433-2825. [ bib | DOI ]
[Rizo2010] David Rizo. Symbolic music comparison with tree data structures. PhD thesis, Universidad de Alicante, 2010. [ bib | .pdf ]
[Burgoyne2009] John Ashley Burgoyne, Yue Ouyang, Tristan Himmelman, Johanna Devaney, Laurent Pugin, and Ichiro Fujinaga. Lyric Extraction and Recognition on Digital Images of Early Music Sources. In 10th International Society for Music Information Retrieval Conference, pages 723-727, Kobe, Japan, 2009. [ bib | .pdf ]
[Byrd2009] Donald Byrd. Studying Music is Difficult and Important: Challenges of Music Knowledge Representation. In Eleanor Selfridge-Field, Frans Wiering, and Geraint A. Wiggins, editors, Knowledge representation for intelligent music processing, number 09051 in Dagstuhl Seminar Proceedings, Wadern, Germany, 2009. Leibniz-Center for Informatics, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. [ bib | http ]
[Cardoso2009] Jamie dos Santos Cardoso, Artur Capela, Ana Rebelo, Carlos Guedes, and Joaquim Pinto da Costa. Staff Detection with Stable Paths. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (6): 1134-1139, 2009. ISSN 0162-8828. [ bib | DOI ]
[Dalitz2009] Christoph Dalitz and Christine Pranzas. German Lute Tablature Recognition. In 10th International Conference on Document Analysis and Recognition, pages 371-375, 2009. [ bib | DOI ]
[Fornes2009] Alicia Fornés, Josep Lladós, Gemma Sánchez, and Horst Bunke. On the Use of Textural Features for Writer Identification in Old Handwritten Music Scores. 10th International Conference on Document Analysis and Recognition, pages 996-1000, 2009. [ bib | DOI | http ]
[Fornes2009a] Alicia Fornés. Writer Identification by a Combination of Graphical Features in the Framework of Old Handwritten Music Scores. PhD thesis, Universitat Autònoma de Barcelona, 2009. [ bib | .pdf ]
[Fremerey2009] Christian Fremerey, David Damm, Frank Kurth, and Michael Clausen. Handling Scanned Sheet Music and Audio Recordings in Digital Music Libraries. In International Conference on Acoustics NAG/DAGA, pages 1-2, 2009. [ bib | .pdf ]
[Genfang2009] Chen Genfang, Zhang Wenjun, and Wang Qiuqiu. Pick-up the Musical Information from Digital Musical Score Based on Mathematical Morphology and Music Notation. In 1st International Workshop on Education Technology and Computer Science, pages 1141-1144, 2009. [ bib | DOI ]
[Johansen2009] Linn Saxrud Johansen. Optical Music Recognition. Master's thesis, University of Oslo, 2009. [ bib | http ]
[Sharif2009] Muhammad Sharif, Quratul-Ain Arshad, Mudassar Raza, and Wazir Zada Khan. [COMSCAN]: An Optical Music Recognition System. In 7th International Conference on Frontiers of Information Technology, page 34. ACM, 2009. [ bib | DOI ]
[Tardon2009] Lorenzo J. Tardón, Simone Sammartino, Isabel Barbancho, Verónica Gómez, and Antonio Oliver. Optical Music Recognition for Scores Written in White Mensural Notation. EURASIP Journal on Image and Video Processing, 2009 (1): 843401, 2009. ISSN 1687-5281. [ bib | DOI ]
[Vrist2009] Søren Bjerregaard Vrist. Optical Music Recognition for structural information from high-quality scanned music, 2009. [ bib ]
[Bellini2008] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. Optical Music Recognition: Architecture and Algorithms. In Kia Ng and Paolo Nesi, editors, Interactive Multimedia Music Technologies, pages 80-110. IGI Global, Hershey, PA, USA, 2008. [ bib | http ]
[Bullen2008] Andrew H. Bullen. Bringing Sheet Music to Life: My Experiences with OMR. code4lib Journal, 3 (84), 2008. ISSN 1940-5758. [ bib | http ]
[Burgoyne2008] John Ashley Burgoyne, Johanna Devaney, Laurent Pugin, and Ichiro Fujinaga. Enhanced Bleedthrough Correction for Early Music Documents with Recto-Verso Registration. In 9th International Conference on Music Information Retrieval, pages 407-412, Philadelphia, PA, 2008. [ bib | .pdf ]
[Capela2008] Artur Capela, Jamie dos Santos Cardoso, Ana Rebelo, and Carlos Guedes. Integrated recognition system for music scores. In International Computer Music Conference, pages 3-6, 2008a. [ bib | http ]
[Capela2008a] Artur Capela, Ana Rebelo, Jamie dos Santos Cardoso, and Carlos Guedes. Staff Line Detection and Removal with Stable Paths. In International Conference on Signal Processing and Multimedia Applications, 2008b. [ bib | .pdf ]
[Cardoso2008] Jamie dos Santos Cardoso, Artur Capela, Ana Rebelo, and Carlos Guedes. A connected path approach for staff detection on a music score. In 15th International Conference on Image Processing, pages 1005-1008, 2008. [ bib | DOI ]
[Craig-McFeely2008] Julia Craig-McFeely. Digital Image Archive of Medieval Music: The evolution of a digital resource. Digital Medievalist, 3, 2008. [ bib | DOI ]
[Dalitz2008] Christoph Dalitz, Michael Droettboom, Bastian Pranzas, and Ichiro Fujinaga. A Comparative Study of Staff Removal Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (5): 753-766, 2008a. ISSN 0162-8828. [ bib | DOI ]
[Dalitz2008a] Christoph Dalitz, Georgios K. Michalakis, and Christine Pranzas. Optical recognition of psaltic Byzantine chant notation. International Journal of Document Analysis and Recognition, 11 (3): 143-158, 2008b. ISSN 1433-2825. [ bib | DOI | http ]
[Damm2008] David Damm, Christian Fremerey, Frank Kurth, Meinard Müller, and Michael Clausen. Multimodal Presentation and Browsing of Music. In 10th International Conference on Multimodal Interfaces, pages 205-208, Chania, Greece, 2008. ACM. ISBN 978-1-60558-198-9. [ bib | DOI | http ]
[Fornes2008] Alicia Fornés, Josep Lladós, Gemma Sánchez, and Horst Bunke. Writer Identification in Old Handwritten Music Scores. In 8th International Workshop on Document Analysis Systems, pages 347-353, Nara, Japan, 2008. [ bib | DOI ]
[Fornes2008a] Alicia Fornés, Josep Lladós, and Gemma Sánchez. Old Handwritten Musical Symbol Classification by a Dynamic Time Warping Based Method. In Wenyin Liu, Josep Lladós, and Jean-Marc Ogier, editors, Graphics Recognition. Recent Advances and New Opportunities, pages 51-60, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-88188-9. [ bib | DOI ]
[Fremerey2008] Christian Fremerey, Meinard Müller, Frank Kurth, and Michael Clausen. Automatic Mapping of Scanned Sheet Music to Audio Recordings. In 9th International Conference on Music Information Retrieval, pages 413-418, 2008. ISBN 978-0-615-24849-3. [ bib | .pdf ]
[Jones2008] Graham Jones, Bee Ong, Ivan Bruno, and Kia Ng. Optical Music Imaging: Music Document Digitisation, Recognition, Evaluation, and Restoration. In Interactive multimedia music technologies, pages 50-79. IGI Global, 2008. [ bib | DOI ]
[Kolakowska2008] Agata Kolakowska. Applying decision trees to the recognition of musical symbols. In 1st International Conference on Information Technology, pages 1-4, 2008. [ bib | DOI ]
[Kurth2008] Frank Kurth, David Damm, Christian Fremerey, Meinard Müller, and Michael Clausen. A Framework for Managing Multimodal Digitized Music Collections. In Birte Christensen-Dalsgaard, Donatella Castelli, Bolette Ammitzbøll Jurik, and Joan Lippincott, editors, Research and Advanced Technology for Digital Libraries, pages 334-345, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-87599-4. [ bib | DOI ]
[Pugin2008] Laurent Pugin, Jason Hockman, John Ashley Burgoyne, and Ichiro Fujinaga. Gamera versus Aruspix - Two Optical Music Recognition Approaches. In 9th International Conference on Music Information Retrieval, 2008. [ bib | .pdf ]
[Rebelo2008] Ana Rebelo. New Methodologies Towards an Automatic Optical Recognition of Handwritten Musical Scores. Master's thesis, Universidade do Porto, 2008. [ bib | .pdf ]
[Smiatacz2008] Maciej Smiatacz and Witold Malina. Matrix-based classifiers applied to recognition of musical notation symbols. In 1st International Conference on Information Technology, pages 1-4, 2008. [ bib | DOI ]
[Szwoch2008] Mariusz Szwoch. Using MusicXML to Evaluate Accuracy of OMR Systems. In International Conference on Theory and Application of Diagrams, pages 419-422, Herrsching, Germany, 2008. Springer, Springer-Verlag. ISBN 978-3-540-87729-5. [ bib | DOI ]
[Wei2008] Lee Ling Wei, Qussay A. Salih, and Ho Sooi Hock. Optical Tablature Recognition (OTR) system: Using Fourier Descriptors as a recognition tool. In International Conference on Audio, Language and Image Processing, pages 1532-1539, 2008. [ bib | DOI ]
[Yoo2008] JaeMyeong Yoo, Nguyen Dinh Toan, DeokJai Choi, HyukRo Park, and Gueesang Lee. Advanced Binarization Method for Music Score Recognition Using Local Thresholds. In 8th International Conference on Computer and Information Technology Workshops, pages 417-420, 2008. [ bib | DOI ]
[Bellini2007] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. Assessing Optical Music Recognition Tools. Computer Music Journal, 31 (1): 68-93, 2007. [ bib | DOI ]
[Burgoyne2007] John Ashley Burgoyne, Laurent Pugin, Greg Eustace, and Ichiro Fujinaga. A Comparative Survey of Image Binarisation Algorithms for Optical Recognition on Degraded Musical Sources. In 8th International Conference on Music Information Retrieval, 2007. [ bib | .pdf ]
[Castro2007] Pedro Castro and J. R. Caldas Pinto. Methods for Written Ancient Music Restoration. In Mohamed Kamel and Aurélio Campilho, editors, Image Analysis and Recognition, pages 1194-1205, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74260-9. [ bib | DOI ]
[Castro2007a] Pedro Castro, R. J. Almeida, and J. R. Caldas Pinto. Restoration of Double-Sided Ancient Music Documents with Bleed-Through. In Luis Rueda, Domingo Mery, and Josef Kittler, editors, Progress in Pattern Recognition, Image Analysis and Applications, pages 940-949, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-76725-1. [ bib | DOI ]
[Diet2007] Jürgen Diet and Frank Kurth. The Probado Music Repository at the Bavarian State Library. In 8th International Conference on Music Information Retrieval, pages 501-504, Vienna, Austria, 2007. [ bib | .pdf ]
[Knopke2007] Ian Knopke and Donald Byrd. Towards Musicdiff : A Foundation for Improved Optical Music Recognition Using Multiple Recognizers. In 8th International Conference on Music Information Retrieval, pages 123-126, Vienna, Austria, 2007. ISBN 978-3-85403-218. [ bib | .pdf ]
[McKay2007] Cory McKay and Ichiro Fujinaga. Style-independent computer-assisted exploratory analysis of large music collections. Journal of Interdisciplinary Music Studies, 1 (1): 63-85, 2007. [ bib | .pdf ]
[Pugin2007] Laurent Pugin, John Ashley Burgoyne, and Ichiro Fujinaga. Goal-directed Evaluation for the Improvement of Optical Music Recognition on Early Music Prints. In 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 303-304, Vancouver, Canada, 2007b. ACM. ISBN 978-1-59593-644-8. [ bib | DOI ]
[Pugin2007a] Laurent Pugin, John Ashley Burgoyne, and Ichiro Fujinaga. MAP Adaptation to Improve Optical Music Recognition of Early Music Documents Using Hidden Markov Models. In 8th International Conference on Music Information Retrieval, pages 513-516, 2007c. [ bib | .pdf ]
[Pugin2007b] Laurent Pugin, John Ashley Burgoyne, and Ichiro Fujinaga. Reducing Costs for Digitising Early Music with Dynamic Adaptation. In László Kovács, Norbert Fuhr, and Carlo Meghini, editors, Research and Advanced Technology for Digital Libraries, pages 471-474, Berlin, Heidelberg, 2007d. Springer Berlin Heidelberg. ISBN 978-3-540-74851-9. [ bib ]
[Pugin2007c] Laurent Pugin, John Ashley Burgoyne, Douglas Eck, and Ichiro Fujinaga. Book-Adaptive and Book-Dependent Models to Accelerate Digitization of Early Music. Technical report, McGill University, Whistler, BC, 2007a. [ bib | http ]
[Rebelo2007] Ana Rebelo, Artur Capela, Joaquim F. Pinto da Costa, Carlos Guedes, Eurico Carrapatoso, and Jamie dos Santos Cardoso. A Shortest Path Approach for Staff Line Detection. In 3rd International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution, pages 79-85, 2007. [ bib | DOI ]
[Szwoch2007] Mariusz Szwoch. Guido: A Musical Score Recognition System. In 9th International Conference on Document Analysis and Recognition, pages 809-813, 2007. [ bib | DOI ]
[Bainbridge2006] David Bainbridge and Tim Bell. Identifying music documents in a collection of images. In 7th International Conference on Music Information Retrieval, pages 47-52, Victoria, Canada, 2006. [ bib | http ]
[Byrd2006] Donald Byrd and Megan Schindele. Prospects for Improving OMR with Multiple Recognizers. In 7th International Conference on Music Information Retrieval, pages 41-46, 2006. ISBN 1-55058-349-2. [ bib | .pdf ]
[Desaedeleer2006] Arnaud F. Desaedeleer. Reading Sheet Music. Master's thesis, University of London, 2006. [ bib | http ]
[Fornes2006] Alicia Fornés, Josep Lladós, and Gemma Sánchez. Primitive Segmentation in Old Handwritten Music Scores. In Wenyin Liu and Josep Lladós, editors, Graphics Recognition. Ten Years Review and Future Perspectives, pages 279-290, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-34712-5. [ bib | DOI ]
[Homenda2006] Wladyslaw Homenda and Marcin Luckner. Automatic Knowledge Acquisition: Recognizing Music Notation with Methods of Centroids and Classifications Trees. In International Joint Conference on Neural Network, pages 3382-3388, Vancouver, Canada, 2006. [ bib | DOI ]
[Homenda2006a] Wladyslaw Homenda. Automatic understanding of images: integrated syntactic and semantic analysis of music notation. In International Joint Conference on Neural Network, pages 3026-3033, Vancouver, Canada, 2006. [ bib | DOI ]
[Luckner2006] Marcin Luckner. Recognition of Noised Patterns Using Non-Disruption Learning Set. In 6th International Conference on Intelligent Systems Design and Applications, pages 557-562, 2006. [ bib | DOI ]
[McPherson2006] John R. McPherson. Coordinating Knowledge To Improve Optical Music Recognition. PhD thesis, The University of Waikato, 2006. [ bib | .pdf ]
[Pugin2006] Laurent Pugin. Optical Music Recognitoin of Early Typographic Prints using Hidden Markov Models. In 7th International Conference on Music Information Retrieval, pages 53-56, Victoria, Canada, 2006a. [ bib | .pdf ]
[Pugin2006a] Laurent Pugin. Aruspix: an Automatic Source-Comparison System. Computing in Musicology, 14: 49-59, 2006b. ISSN 1057-9478. [ bib | http ]
[Pugin2006b] Laurent Pugin. Lecture et traitement informatique de typographies musicales anciennes: un logiciel de reconnaissance de partitions par modèles de Markov cachés. PhD thesis, Geneva University, Geneva, Switzerland, 2006c. [ bib | DOI ]
[Rossant2006] Florence Rossant and Isabelle Bloch. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection. EURASIP Journal on Advances in Signal Processing, 2007 (1): 081541, 2006. ISSN 1687-6180. [ bib | DOI ]
[Toyama2006] Fubito Toyama, Kenji Shoji, and Juichi Miyamichi. Symbol Recognition of Printed Piano Scores with Touching Symbols. In 18th International Conference on Pattern Recognition, pages 480-483, 2006. [ bib | DOI ]
[Barton2005] Louis W. G. Barton, John A. Caldwell, and Peter G. Jeavons. E-library of Medieval Chant Manuscript Transcriptions. In 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 320-329, Denver, CO, USA, 2005. ACM. ISBN 1-58113-876-8. [ bib | DOI ]
[Dalitz2005] Christoph Dalitz and Thomas Karsten. Using the Gamera framework for building a lute tablature recognition system. In 6th International Conference on Music Information Retrieval, pages 478-481, London, UK, 2005. [ bib | .pdf ]
[Fornes2005] Alicia Fornés. Analysis of Old Handwritten Musical Scores. Master's thesis, Universitat Autònoma de Barcelona, 2005. [ bib | .pdf ]
[Gan2005] Ting Gan. Música Colonial: 18th Century Music Score Meets 21st Century Digitalization Technology. In 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 379-379, Denver, USA, 2005. ACM. ISBN 1-58113-876-8. [ bib | DOI ]
[Homenda2005] Wladyslaw Homenda. Optical Music Recognition: the Case Study of Pattern Recognition. In Marek Kurzyński, Edward Puchala, Michal WoŹniak, and Andrzej żolnierek, editors, Computer Recognition Systems, pages 835-842, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32390-7. [ bib | DOI ]
[Rossant2005] Florence Rossant and Isabelle Bloch. Optical music recognition based on a fuzzy modeling of symbol classes and music writing rules. In IEEE International Conference on Image Processing 2005, pages II-538, 2005. [ bib | DOI ]
[Szwoch2005] Mariusz Szwoch. A Robust Detector for Distorted Music Staves. In André Gagalowicz and Wilfried Philips, editors, Computer Analysis of Images and Patterns, pages 701-708, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32011-1. [ bib | DOI ]
[Taubman2005] Gabriel Taubman. MusicHand : A Handwritten Music Recognition System. Technical report, Brown University, 2005. [ bib | .pdf ]
[Audiveris] Hervé Bitteur. Audiveris. https://github.com/audiveris, 2004. [ bib | http ]
[Bellini2004] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. An Off-Line Optical Music Sheet Recognition. In Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 40-77. IGI Global, 2004. [ bib | DOI ]
[Clausen2004] Michael Clausen and Frank Kurth. A unified approach to content-based and fault-tolerant music recognition. IEEE Transactions on Multimedia, 6 (5): 717-731, 2004. ISSN 1520-9210. [ bib | DOI ]
[Dovey2004] Matthew J. Dovey. Overview of the OMRAS Project: Online Music Retrieval and Searching. Journal of the American Society for Information Science and Technology, 55 (12): 1100-1107, 2004. [ bib | DOI | http ]
[Droettboom2004] Michael Droettboom and Ichiro Fujinaga. Symbol-level groundtruthing environment for OMR. In 5th International Conference on Music Information Retrieval, pages 497-500, 2004. [ bib | .pdf ]
[Fujinaga2004] Ichiro Fujinaga. Staff detection and removal. In Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 1-39. IGI Global, 2004. [ bib | DOI ]
[George2004] Susan E. George. Visual Perception of Music Notation On-Line and Off-Line Recognition. IRM Press, 2004a. ISBN 1931777942. [ bib | http ]
[George2004a] Susan E. George. Evaluation in the Visual Perception of Music Notation. In S. George, editor, Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 304-349. IRM Press, Hershey, PA, 2004b. [ bib | DOI ]
[George2004b] Susan E. George. Lyric Recognition and Christian Music. In S. George, editor, Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 198-226. IRM Press, Hershey, PA, 2004c. [ bib | DOI ]
[George2004c] Susan E. George. Wavelets for Dealing with Super-Imposed Objects in Recognition of Music Notation. In S. George, editor, Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 78-107. IRM Press, Hershey, PA, 2004d. [ bib | DOI ]
[George2004d] Susan E. George. Pen-Based Input for On-Line Handwritten Music Notation. In S. George, editor, Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 128-160. IRM Press, Hershey, PA, 2004e. [ bib | DOI ]
[Homenda2004] Wladyslaw Homenda and Marcin Luckner. Automatic Recognition of Music Notation Using Neural Networks. In International Conference on AI and Systems, Divnormorkoye, Russia, 2004. [ bib | http ]
[Homenda2004a] Wladyslaw Homenda and K. Mossakowski. Music Symbol Recognition: Neural Networks vs. Statistical Methods. In B. De Baets, R. De Caluwe, G. De Tre, Janos Fodor, J. Kaprzyk, and S. Zadrozny, editors, EUROFUSE Workshop On Data And Knowledge Engineering, Warszawa, Poland, 2004. [ bib | http ]
[Mitobe2004] Youichi Mitobe, Hidetoshi Miyao, and Minoru Maruyama. A fast HMM algorithm based on stroke lengths for on-line recognition of handwritten music scores. In 9th International Workshop on Frontiers in Handwriting Recognition, pages 521-526, 2004. [ bib | DOI ]
[Miyao2004] Hidetoshi Miyao and Minoru Maruyama. An online handwritten music score recognition system. In 17th International Conference on Pattern Recognition. Institute of Electrical & Electronics Engineers (IEEE), 2004. [ bib | DOI ]
[Ng2004] Kia Ng. Optical Music Analysis for Printed Music Score and Handwritten Music Manuscript. In Visual Perception of Music Notation: On-Line and Off Line Recognition, pages 108-127. IGI Global, 2004. [ bib | DOI ]
[Rossant2004] Florence Rossant and Isabelle Bloch. A fuzzy model for optical recognition of musical scores. Fuzzy Sets and Systems, 141 (2): 165-201, 2004. ISSN 0165-0114. [ bib | DOI | http ]
[Sheridan2004] Scott Sheridan and Susan E. George. Defacing Music Scores for Improved Recognition. In 2nd Australian Undergraduate Students' Computing Conference, pages 142-148, 2004. [ bib | .pdf ]
[Bainbridge2003] David Bainbridge and Tim Bell. A music notation construction engine for optical music recognition. Software: Practice and Experience, 33 (2): 173-200, 2003. ISSN 1097-024X. [ bib | DOI ]
[Bruder2003] Ilvio Bruder, Andreas Finger, Andreas Heuer, and Temenushka Ignatova. Towards a Digital Document Archive for Historical Handwritten Music Scores. In Tengku Mohd Tengku Sembok, Halimah Badioze Zaman, Hsinchun Chen, Shalini R. Urs, and Sung-Hyon Myaeng, editors, Digital Libraries: Technology and Management of Indigenous Knowledge for Global Access, pages 411-414, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-24594-0. [ bib | DOI ]
[Byrd2003] Donald Byrd and Eric Isaacson. A Music Representation Requirement Specification for Academia. Computer Music Journal, 27 (4): 43-57, 2003. ISSN 01489267, 15315169. [ bib | http ]
[George2003] Susan E. George. Online Pen-Based Recognition of Music Notation with Artificial Neural Networks. Computer Music Journal, 27 (2): 70-79, 2003. [ bib | DOI ]
[Goecke2003] Roland Göcke. Building a system for writer identification on handwritten music scores. In IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, pages 250-255. Acta Press, 2003. ISBN 0 88986 363 6. [ bib | .pdf ]
[Nehab2003] Diego Nehab. Staff Line Detection by Skewed Projection. Technical report, 2003. [ bib | .pdf ]
[Pinto2003] João Caldas Pinto, Pedro Vieira, and João M. Sousa. A new graph-like classification method applied to ancient handwritten musical symbols. Document Analysis and Recognition, 6 (1): 10-22, 2003. ISSN 1433-2825. [ bib | DOI | http ]
[Riley2003] Jenn Riley and Ichiro Fujinaga. Recommended best practices for digital image capture of musical scores. OCLC Systems & Services, 19 (2): 62-69, 2003. ISSN 1065-075X. [ bib | DOI ]
[Barton2002] Louis W. G. Barton. The NEUMES Project: digital transcription of medieval chant manuscripts. In 2nd International Conference on Web Delivering of Music, pages 211-218, 2002. [ bib | DOI ]
[Clausen2002] Michael Clausen and Frank Kurth. A unified approach to content-based and fault tolerant music identification. In 2nd International Conference on Web Delivering of Music, pages 56-65, 2002. [ bib | DOI ]
[Droettboom2002] Michael Droettboom, Ichiro Fujinaga, and Karl MacMillan. Optical Music Interpretation. In Terry Caelli, Adnan Amin, Robert P. W. Duin, Dick de Ridder, and Mohamed Kamel, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 378-387, Berlin, Heidelberg, 2002a. Springer Berlin Heidelberg. ISBN 978-3-540-70659-5. [ bib | DOI ]
[Droettboom2002a] Michael Droettboom, Ichiro Fujinaga, Karl MacMillan, G. Sayeed Chouhury, Tim DiLauro, Mark Patton, and Teal Anderson. Using the Gamera framework for the recognition of cultural heritage materials. In Joint Conference on Digital Libraries, pages 12-17, London, UK, 2002b. [ bib | .pdf ]
[Gezerlis2002] Velissarios G. Gezerlis and Sergios Theodoridis. Optical character recognition of the Orthodox Hellenic Byzantine Music notation. Pattern Recognition, 35 (4): 895-914, 2002. ISSN 0031-3203. [ bib | DOI | http ]
[Lopresti2002] Daniel Lopresti and George Nagy. Issues in Ground-Truthing Graphic Documents. In Graphics Recognition Algorithms and Applications, pages 46-67. Springer Berlin Heidelberg, Ontario, Canada, 2002. ISBN 978-3-540-45868-5. [ bib | DOI ]
[Luth2002] Nailja Luth. Automatic Identification of Music Notations. In 2nd International Conference on WEB Delivering of Music, 2002. ISBN 0769518621. [ bib | DOI ]
[MacMillan2002] Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga. Gamera: Optical music recognition in a new shell. In International Computer Music Conference, pages 482-485, 2002. [ bib | .pdf ]
[McPherson2002] John R. McPherson. Introducing Feedback into an Optical Music Recognition System. In 3rd International Conference on Music Information Retrieval, Paris, France, 2002. [ bib | .pdf ]
[McPherson2002a] John R. McPherson and David Bainbridge. Coordinating Knowledge Within an Optical Music Recognition System. Technical report, University of Waikato, Hamilton, New Zealand, 2002. [ bib | http ]
[Miyao2002] Hidetoshi Miyao. Stave Extraction for Printed Music Scores. In Hujun Yin, Nigel Allinson, Richard Freeman, John Keane, and Simon Hubbard, editors, Intelligent Data Engineering and Automated Learning, pages 562-568. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-45675-9. [ bib | http ]
[Ng2002] Kia Ng. Music manuscript tracing. Lecture Notes in Computer Science, 2390: 322-334, 2002. ISSN 1611-3349. [ bib | DOI | .pdf ]
[Roland2002] Perry Roland. The music encoding initiative (MEI). In 1st International Conference on Musical Applications Using XML, pages 55-59, 2002. [ bib | .pdf ]
[Rossant2002] Florence Rossant. A global method for music symbol recognition in typeset music sheets. Pattern Recognition Letters, 23 (10): 1129-1141, 2002. ISSN 0167-8655. [ bib | DOI ]
[Soak2002] Sang Moon Soak, Seok Cheol Chang, Taehwan Shin, and Byung-Ha Ahn. Music recognition system using ART-1 and GA. In AeroSense 2002, 2002. [ bib | DOI ]
[Bainbridge2001] David Bainbridge and Tim Bell. The Challenge of Optical Music Recognition. Computers and the Humanities, 35 (2): 95-121, 2001. ISSN 1572-8412. [ bib | DOI ]
[Bainbridge2001a] David Bainbridge, Gerry Bernbom, Mary Wallace Davidson, Andrew P. Dillon, Matthey Dovey, Jon W. Dunn, Michael Fingerhut, Ichiro Fujinaga, and Eric J. Isaacson. Digital Music Libraries - Research and Development. In 1st ACM/IEEE-CS Joint Conference on Digital Libraries, pages 446-448, Roanoke, Virginia, USA, 2001. [ bib | DOI ]
[Bellini2001] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. Optical music sheet segmentation. In 1st International Conference on WEB Delivering of Music, pages 183-190. Institute of Electrical & Electronics Engineers (IEEE), 2001. ISBN 0769512844. [ bib | DOI ]
[Choudhury2001] G. Sayeed Choudhury, Tim DiLauro, Michael Droettboom, Ichiro Fujinaga, and Karl MacMillan. Strike Up the Score: Deriving searchable and playable digital formats from sheet music. D-Lib Magazine, 7 (2), 2001. ISSN 1082-9873. [ bib | DOI | .html ]
[Coueasnon2001] Bertrand Coüasnon. DMOS: a generic document recognition method, application to an automatic generator of musical scores, mathematical formulae and table structures recognition systems. In 6th International Conference on Document Analysis and Recognition, pages 215-220, 2001. [ bib | DOI ]
[Droettboom2001] Michael Droettboom and Ichiro Fujinaga. Interpreting the semantics of music notation using an extensible and object-oriented system. Technical report, John Hopkins University, 2001. [ bib | http ]
[Homenda2001] Wladyslaw Homenda. Optical Music Recognition: the Case of Granular Computing. In Granular Computing: An Emerging Paradigm, pages 341-366. Physica-Verlag HD, Heidelberg, 2001. ISBN 978-3-7908-1823-9. [ bib | DOI | http ]
[MacMillan2001] Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga. Gamera: A structured document recognition application development environment. In 2nd International Symposium on Music Information Retrieval, pages 15-16, Bloomington, IN, 2001. [ bib | http ]
[McPherson2001] John R. McPherson. Using feedback to improve Optical Music Recognition, 2001. [ bib ]
[Pugin2001] Laurent Pugin. Réalisation d'un système de superposition de partitions de musique anciennes. Technical report, Geneva University, Geneva, Switzerland, 2001. [ bib | .pdf ]
[Rossant2001] Florence Rossant and Isabelle Bloch. Reconnaissance de Partitions Musicales par Modélisation Floue et Intégration de Règles Musicales. In GRETSI, Toulouse, France, 2001. [ bib | http ]
[Su2001] Mu-Chun Su, Chee-Yuen Tew, and Hsin-Hua Chen. Musical symbol recognition using SOM-based fuzzy systems. In Joint 9th IFSA World Congress and 20th NAFIPS International Conference, pages 2150-2153 vol.4, 2001. [ bib | DOI ]
[Vieira2001] Pedro Vieira and João Caldas Pinto. Recognition of musical symbols in ancient manuscripts. In International Conference on Image Processing, pages 38-41 vol.3, 2001. [ bib | DOI ]
[Anquetil2000] Éric Anquetil, Bertrand Coüasnon, and Frédéric Dambreville. A Symbol Classifier Able to Reject Wrong Shapes for Document Recognition Systems. In Atul K. Chhabra and Dov Dori, editors, Graphics Recognition Recent Advances, pages 209-218, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-40953-3. [ bib | http ]
[Choudhury2000] G. Sayeed Choudhury, M. Droetboom, Tim DiLauro, Ichiro Fujinaga, and Brian Harrington. Optical Music Recognition System within a Large-Scale Digitization Project. In 1st International Symposium on Music Information Retrieval, 2000a. [ bib | http ]
[Choudhury2000a] G. Sayeed Choudhury, Cynthia Requardt, Ichiro Fujinaga, Tim DiLauro, Elisabeth W. Brown, James W. Warner, and Brian Harrington. Digital workflow management: The Lester S. Levy digitized collection of sheet music. First Monday, 5 (6), 2000b. [ bib | DOI ]
[Fotinea2000] Stavroula-Evita Fotinea, George Giakoupis, Aggelos Livens, Stylianos Bakamidis, and George Carayannis. An Optical Notation Recognition System for Printed Music Based on Template Matching and High Level Reasoning. In RIAO '00 Content-Based Multimedia Information Access, pages 1006-1014, Paris, France, 2000. Le centre de hautes etudes internationales d'informatique documentaire. [ bib | http ]
[Fujinaga2000] Ichiro Fujinaga. Optical Music Recognition Bibliography. http://www.music.mcgill.ca/~ich/research/omr/omrbib.html, 2000. [ bib | .html ]
[Lallican2000] P. M. Lallican, C. Viard-Gaudin, and S. Knerr. From Off-Line to On-Line Handwriting Recognition. In L. R. B. Schomaker and L. G. Vuurpijl, editors, 7th International Workshop on Frontiers in Handwriting Recognition, pages 303-312, Amsterdam, 2000. International Unipen Foundation. ISBN 90-76942-01-3. [ bib | .pdf ]
[Lin2000] Karen Lin and Tim Bell. Integrating Paper and Digital Music Information Systems. In International Society for Music Information Retrieval, pages 23-25, 2000. [ bib | .pdf ]
[Miyao2000] Hidetoshi Miyao and Robert Martin Haralick. Format of Ground Truth Data Used in the Evaluation of the Results of an Optical Music Recognition System. In 4th International Workshop on Document Analysis Systems, pages 497-506, Brasil, 2000. [ bib | .pdf ]
[Pinto2000] João Caldas Pinto, Pedro Vieira, M. Ramalho, M. Mengucci, P. Pina, and F. Muge. Ancient Music Recovery for Digital Libraries. In José Borbinha and Thomas Baker, editors, Research and Advanced Technology for Digital Libraries, pages 24-34, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45268-3. [ bib | DOI ]
[Bainbridge1999] David Bainbridge and K. Wijaya. Bulk processing of optically scanned music. In 7th International Conference on Image Processing and its Applications, pages 474-478. Institution of Engineering and Technology, 1999. [ bib | DOI | http ]
[Beran1999] Tomáš Beran and Tomáš Macek. Recognition of Printed Music Score. In Petra Perner and Maria Petrou, editors, Machine Learning and Data Mining in Pattern Recognition, pages 174-179. Springer Berlin Heidelberg, 1999. ISBN 978-3-540-48097-6. [ bib | DOI ]
[Blostein1999] Dorothea Blostein and Lippold Haken. Using diagram generation software to improve diagram recognition: a case study of music notation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (11): 1121-1136, 1999. ISSN 0162-8828. [ bib | DOI ]
[Ferrand1999] Miguel Ferrand, João Alexandre Leite, and Amilcar Cardoso. Hypothetical reasoning: An application to Optical Music Recognition. In Appia-Gulp-Prode'99 joint conference on declarative programming, pages 367-381, 1999a. [ bib | http ]
[Ferrand1999a] Miguel Ferrand, João Alexandre Leite, and Amilcar Cardoso. Improving Optical Music Recognition by Means of Abductive Constraint Logic Programming. In Pedro Barahona and José J. Alferes, editors, Progress in Artificial Intelligence, pages 342-356, Berlin, Heidelberg, 1999b. Springer Berlin Heidelberg. ISBN 978-3-540-48159-1. [ bib | DOI ]
[Hori1999] Toyokazu Hori, Shinichiro Wada, Howzan Tai, and S. Y. Kung. Automatic music score recognition/play system based on decision based neural network. In 3rd Workshop on Multimedia Signal Processing, pages 183-184, 1999. [ bib | DOI ]
[Marinai1999] Simone Marinai and Paolo Nesi. Projection Based Segmentation of Musical Sheets. In 5th International Conference on Document Analysis and Recognition, pages 3-6, 1999. ISBN 0-7695-0318-7. [ bib | DOI ]
[McPherson1999] John R. McPherson. Page Turning - Score Automation for Musicians. Technical report, University of Canterbury, New Zealand, 1999. [ bib | http ]
[Ng1999] Kia Ng, David Cooper, Ewan Stefani, Roger Boyle, and Nick Bailey. Embracing the Composer : Optical Recognition of Handwrtten Manuscripts. In International Computer Music Conference, pages 500-503, 1999. [ bib | http ]
[VuilleumierStueckelberg1999] Marc Vuilleumier Stückelberg and David Doermann. On musical score recognition using probabilistic reasoning. In 5th International Conference on Document Analysis and Recognition, pages 115-118, 1999. ISBN 0-7695-0318-7. [ bib | DOI | http ]
[Wijaya1999] K. Wijaya and David Bainbridge. Staff line restoration. In 7th International Conference on Image Processing and its Applications, pages 760-764. Institution of Engineering and Technology, 1999. [ bib | DOI ]
[Bainbridge1998] David Bainbridge and Stuart Inglis. Musical image compression. In Data Compression Conference, pages 209-218, 1998. [ bib | DOI ]
[Chhabra1998] Atul K. Chhabra. Graphic symbol recognition: An overview. In Karl Tombre and Atul K. Chhabra, editors, Graphics Recognition Algorithms and Systems, pages 68-79, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-69766-4. [ bib | DOI ]
[Fahmy1998] Hoda M. Fahmy and Dorothea Blostein. A graph-rewriting paradigm for discrete relaxation: Application to sheet-music recognition. International Journal of Pattern Recognition and Artificial Intelligence, 12 (6): 763-799, 1998. [ bib | DOI ]
[Ferrand1998] Miguel Ferrand and Amílcar Cardoso. Scheduling to Reduce Uncertainty in Syntactical Music Structures. In Flávio Moreira de Oliveira, editor, Advances in Artificial Intelligence, pages 249-258, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-49523-9. [ bib | DOI ]
[Fujinaga1998] Ichiro Fujinaga, Stephan Moore, and David S. Sullivan. Implementation of exemplar-based learning model for music cognition. In International Conference on Music Perception and Cognition, pages 171-179, Seoul, South Korea, 1998. [ bib | .pdf ]
[Bainbridge1997] David Bainbridge and Tim Bell. Dealing with Superimposed Objects in Optical Music Recognition. In 6th International Conference on Image Processing and its Applications, number 443, pages 756-760, 1997. ISBN 0 85296 692 X. [ bib | DOI ]
[Bainbridge1997a] David Bainbridge. Extensible optical music recognition. PhD thesis, University of Canterbury, 1997. [ bib | http ]
[Bainbridge1997b] David Bainbridge and Nicholas Paul Carter. Automatic reading of music notation. In H. Bunke and P. Wang, editors, Handbook of Character Recognition and Document Image Analysis, pages 583-603. World Scientific, Singapore, 1997. [ bib | DOI ]
[VuilleumierStueckelberg1997] Marc Vuilleumier Stückelberg, Christian Pellegrini, and Mélanie Hillario. A preview of an architecture for musical score recognition. Technical report, University of Geneva, 1997b. [ bib | http ]
[VuilleumierStueckelberg1997a] Marc Vuilleumier Stückelberg, Christian Pellegrini, and Mélanie Hilario. An architecture for musical score recognition using high-level domain knowledge. In 4th International Conference on Document Analysis and Recognition, pages 813-818 vol.2, 1997a. [ bib | DOI ]
[Anstice1996] Jamie Anstice, Tim Bell, Andy Cockburn, and Martin Setchell. The design of a pen-based musical input system. In 6th Australian Conference on Computer-Human Interaction, pages 260-267, 1996. [ bib | DOI ]
[Bainbridge1996] David Bainbridge and Tim Bell. An extensible optical music recognition system. Australian Computer Science Communications, 18: 308-317, 1996. [ bib | .html ]
[CapellaScan] capella-software AG. Capella Scan. https://www.capella-software.com, 1996. [ bib | http ]
[Dan1996] Lee Sau Dan. Automatic Optical Music recognition. Technical report, The University of Waikato, New Zealand, 1996. [ bib | .ps.gz ]
[Fujinaga1996] Ichiro Fujinaga. Exemplar-based learning in adaptive optical music recognition system. In International Computer Music Conference, pages 55-56, Hong Kong, 1996a. ISBN 962-85092-1-7. [ bib | http ]
[Fujinaga1996a] Ichiro Fujinaga. Adaptive optical music recognition. PhD thesis, McGill University, 1996b. [ bib | .pdf ]
[Homenda1996] Wladyslaw Homenda. Automatic recognition of printed music and its conversion into playable music data. Control and Cybernetics, 25 (2): 353-367, 1996. [ bib | .pdf ]
[Kopec1996] Gary E. Kopec, Philip A. Chou, and David A. Maltz. Markov source model for printed music decoding. Journal of Electronic Imaging, 5, 1996. [ bib | DOI | .pdf ]
[Miyao1996] Hidetoshi Miyao and Yasuaki Nakano. Note symbol extraction for printed piano scores using neural networks. IEICE Transactions on Information and Systems, E79-D (5): 548-554, 1996. [ bib | http ]
[Modayur1996] Bharath R. Modayur. Music Score Recognition - A Selective Attention Approach using Mathematical Morphology. Technical report, Electrical Engineering Department, University of Washington, Seattle, 1996. [ bib | http ]
[Ng1996] Kia Ng and Roger Boyle. Recognition and reconstruction of primitives in music scores. Image and Vision Computing, 14 (1): 39-46, 1996. ISSN 0262-8856. [ bib | DOI | http ]
[Reed1996] K. Todd Reed and J. R. Parker. Automatic Computer Recognition of Printed Music. In 13th International Conference on Pattern Recognition, pages 803-807, 1996. ISBN 081867282X. [ bib | DOI ]
[Yadid-Pecht1996] Orly Yadid-Pecht, Moty Gerner, Lior Dvir, Eliyahu Brutman, and Uri Shimony. Recognition of handwritten musical notes by a modified Neocognitron. Machine Vision and Applications, 9 (2): 65-72, 1996. ISSN 1432-1769. [ bib | DOI | http ]
[Baumann1995] Stephan Baumann. A Simplified Attributed Graph Grammar for High-Level Music Recognition. In 3rd International Conference on Document Analysis and Recognition, pages 1080-1083. IEEE, 1995. ISBN 0-8186-7128-9. [ bib | DOI ]
[Baumann1995a] Stephan Baumann and Karl Tombre. Report of the line drawing and music recognition working group. In A. Lawrence Spitz and Andreas Dengel, editors, Document Analysis Systems, pages 1080-1083, 1995. [ bib | DOI ]
[Coueasnon1995] Bertrand Coüasnon, Pascal Brisset, and Igor Stéphan. Using Logic Programming Languages For Optical Music Recognition. In 3rd International Conference on the Practical Application of Prolog, 1995. [ bib | http ]
[Coueasnon1995a] Bertrand Coüasnon and Jean Camillerapp. A Way to Separate Knowledge From Program in Structured Document Analysis: Application to Optical Music Recognition. In 3rd International Conference on Document Analysis and Recognition, pages 1092-1097, 1995. [ bib | DOI ]
[Coueasnon1995b] Bertrand Coüasnon and Bernard Rétif. Using a grammar for a reliable full score recognition system. In International Computer Music Conference, pages 187-194, 1995. [ bib | .pdf ]
[Homenda1995] Wladyslaw Homenda. Optical pattern recognition for printed music notation. In Symposium on OE/Aerospace Sensing and Dual Use Photonics, 1995. [ bib | DOI | http ]
[Miyao1995] Hidetoshi Miyao and Yasuaki Nakano. Head and stem extraction from printed music scores using a neural network approach. In 3rd International Conference on Document Analysis and Recognition, pages 1074-1079, 1995. ISBN 0-8186-7128-9. [ bib | DOI ]
[Ng1995] Kia Ng, Roger Boyle, and David Cooper. Low- and high-level approaches to optical music score recognition. In IEE Colloquium on Document Image Processing and Multimedia Environments, pages 31-36, 1995. [ bib | DOI ]
[PoulaindAndecy1995] Vincent Poulain d'Andecy, Jean Camillerapp, and Ivan Leplumey. Analyse de Partitions Musicales. Traitement du Signal, 12 (6): 653-661, 1995. [ bib | http ]
[Seales1995] W. Brent Seales and Arcot Rajasekar. Interpreting music manuscripts: A logic-based, object-oriented approach. In Roland T. Chin, Horace H. S. Ip, Avi C. Naiman, and Ting-Chuen Pong, editors, Image Analysis Applications and Computer Graphics, pages 181-188, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN 978-3-540-49298-6. [ bib | DOI ]
[Yoda1995] Ikushi Yoda, Kazuhiko Yamamoto, and Hiromitsu Yamada. Automatic Construction of Recognition Procedures for Musical Notes by Genetic Algorithm. In A. Lawrence Spitz and Andreas Dengel, editors, Document Analysis Systems, 1995. [ bib | DOI ]
[Bainbridge1994] David Bainbridge. A complete optical music recognition system: Looking to the future. Technical report, University of Canterbury, 1994a. [ bib | http ]
[Bainbridge1994a] David Bainbridge. Optical music recognition: Progress report 1. Technical report, Department of Computer Science, University of Canterbury, 1994b. [ bib | http ]
[Carter1994] Nicholas Paul Carter. Conversion of the Haydn symphonies into electronic form using automatic score recognition: a pilot study. In International Symposium on Electronic Imaging: Science and Technology, pages 2181 - 2181 - 12, 1994. [ bib | DOI | http ]
[Coueasnon1994] Bertrand Coüasnon and Jean Camillerapp. Using Grammars to Segment and Recognize Music Scores. In International Association for Pattern Recognition Workshop on Document Analysis Systems, pages 15-27, Kaiserslautern, Germany, 1994. [ bib | .ps ]
[Essmayr1994] Wolfgang Essmayr. Optische-Musik-Erkennung (OME), Erkennung von Notenschrift. Master's thesis, Johannes Kepler University Linz, Austria, 1994. [ bib | .ps.gz ]
[Fahmy1994] Hoda M. Fahmy and Dorothea Blostein. Graph-rewriting approach to discrete relaxation: application to music recognition. In International Symposium on Electronic Imaging: Science and Technology, pages 2181 - 2181 - 12, 1994. [ bib | DOI ]
[PoulaindAndecy1994] Vincent Poulain d'Andecy, Jean Camillerapp, and Ivan Leplumey. Kalman filtering for segment detection: application to music scores analysis. In 12th International Conference on Pattern Recognition. IEEE Comput. Soc. Press, 1994a. [ bib | DOI ]
[PoulaindAndecy1994a] Vincent Poulain d'Andecy, Jean Camillerapp, and Ivan Leplumey. Détecteur robuste de segments; Application à l'analyse de partitions musicales. In Actes 9 ème Congrés AFCET Reconnaissance des Formes et Intelligence Artificielle, 1994b. [ bib ]
[Roth1994] Martin Roth. An approach to recognition of printed music. Technical report, Swiss Federal Institute of Technology, 1994. [ bib | DOI ]
[Armand1993] Jean-Pierre Armand. Musical score recognition: A hierarchical and recursive approach. In 2nd International Conference on Document Analysis and Recognition, pages 906-909, 1993. [ bib | DOI ]
[Baumann1993] Stephan Baumann. Document recognition of printed scores and transformation into MIDI. Technical report, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, 1993. [ bib | DOI ]
[Clarke1993] Alastair T. Clarke, B. Malcom Brown, and M. P. Thorne. Recognizing musical text. In Machine Vision Applications, Architectures, and Systems Integration, 1993. [ bib | DOI ]
[Fahmy1993] Hoda M. Fahmy and Dorothea Blostein. Graph Grammar Processing of Uncertain Data. In Advances in Structural and Syntactic Pattern Recognition, pages 373-382. World Scientific, 1993a. [ bib | DOI ]
[Fahmy1993a] Hoda M. Fahmy and Dorothea Blostein. A graph grammar programming style for recognition of music notation. Machine Vision and Applications, 6 (2): 83-99, 1993b. ISSN 1432-1769. [ bib | DOI | http ]
[Fujinaga1993] Ichiro Fujinaga. Optical music recognition system which learns. In Enabling Technologies for High-Bandwidth Applications, 1993. [ bib | DOI ]
[Leplumey1993] Ivan Leplumey, Jean Camillerapp, and G. Lorette. A robust detector for music staves. In 2nd International Conference on Document Analysis and Recognition, pages 902-905, 1993. [ bib | DOI ]
[Modayur1993] Bharath R. Modayur, Visvanathan Ramesh, Robert M. Haralick, and Linda G. Shapiro. MUSER: A prototype musical score recognition system using mathematical morphology. Machine Vision and Applications, 6 (2): 140-150, 1993. ISSN 1432-1769. [ bib | DOI ]
[Randriamahefa1993] R. Randriamahefa, J. P. Cocquerez, C. Fluhr, F. Pepin, and S. Philipp. Printed music recognition. In 2nd International Conference on Document Analysis and Recognition, pages 898-901, 1993. [ bib | DOI ]
[Baumann1992] Stephan Baumann and Andreas Dengel. Transforming Printed Piano Music into MIDI. In Advances in Structural and Syntactic Pattern Recognition, pages 363-372. World Scientific, 1992. [ bib | DOI ]
[Blostein1992] Dorothea Blostein and Henry S. Baird. A Critical Survey of Music Image Analysis. In Structured Document Image Analysis, pages 405-434. Springer Berlin Heidelberg, 1992. ISBN 978-3-642-77281-8. [ bib | DOI ]
[Blostein1992a] Dorothea Blostein and Nicholas Paul Carter. Recognition of Music Notation: SSPR'90 Working Group Report. In Structured Document Image Analysis, pages 573-574. Springer Berlin Heidelberg, 1992. ISBN 978-3-642-77281-8. [ bib | DOI | http ]
[Bulis1992] Alex Bulis, Roy Almog, Moti Gerner, and Uri Shimony. Computerized recognition of hand-written musical notes. In International Computer Music Conference, pages 110-112, 1992. [ bib | http ]
[Carter1992] Nicholas Paul Carter and Richard A. Bacon. Automatic Recognition of Printed Music. In Structured Document Image Analysis, pages 456-465. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-642-77281-8. [ bib | DOI | http ]
[Carter1992a] Nicholas Paul Carter. A New Edition of Walton's Façade Using Automatic Score Recognition. In Advances in Structural and Syntactic Pattern Recognition, pages 352-362. World Scientific, 1992a. [ bib | DOI ]
[Carter1992b] Nicholas Paul Carter. Segmentation and preliminary recognition of madrigals notated in white mensural notation. Machine Vision and Applications, 5 (3): 223-229, 1992b. ISSN 1432-1769. [ bib | DOI | http ]
[Itagaki1992] Takebumi Itagaki, Masayuki Isogai, Shuji Hashimoto, and Sadamu Ohteru. Automatic Recognition of Several Types of Musical Notation. In Structured Document Image Analysis, pages 466-476. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-642-77281-8. [ bib | DOI | http ]
[Kato1992] Hirokazu Kato and Seiji Inokuchi. A Recognition System for Printed Piano Music Using Musical Knowledge and Constraints. In Structured Document Image Analysis, pages 435-455. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992. ISBN 978-3-642-77281-8. [ bib | DOI | http ]
[Martin1992] Philippe Martin and Camille Bellisant. Neural Networks for the Recognition of Engraved Musical Scores. International Journal of Pattern Recognition and Artificial Intelligence, 06 (01): 193-208, 1992. [ bib | DOI ]
[Martin1992a] Philippe Martin. Artificial neural networks : application to optical musical score recognition. Theses, Université Joseph-Fourier - Grenoble I, 1992. [ bib | http ]
[Ng1992] Kia Ng and Roger Boyle. Segmentation of Music Primitives. In David Hogg and Roger Boyle, editors, BMVC92, pages 472-480, London, 1992. Springer London. ISBN 978-1-4471-3201-1. [ bib | DOI ]
[Sicard1992] Etienne Sicard. An efficient method for the recognition of printed music. In 11th International Conference on Pattern Recognition, pages 573-576, 1992. [ bib | DOI ]
[Stevens1992] Catherine Stevens and Cyril Latimer. A comparison of connectionist models of music recognition and human performance. Minds and Machines, 2 (4): 379-400, 1992. ISSN 1572-8641. [ bib | DOI | http ]
[Wolman1992] Amnon Wolman, James Choi, Shahab Asgharzadeh, and Jason Kahana. Recognition of Handwritten Music Notation. In International Computer Music Conference, 1992. [ bib ]
[Bainbridge1991] David Bainbridge. Preliminary experiments in musical score recognition, 1991. [ bib ]
[Blostein1991] Dorothea Blostein and Lippold Haken. Justification of Printed Music. Communications of the ACM, 34 (3): 88-99, 1991. ISSN 0001-0782. [ bib | DOI ]
[McGee1991] William McGee and Paul Merkley. The Optical Scanning of Medieval Music. Computers and the Humanities, 25 (1): 47-53, 1991. ISSN 1572-8412. [ bib | DOI | http ]
[Ruttenberg1991] Alan Ruttenberg. Optical Reading of Typeset Music. Master's thesis, Massachusetts Institute of Technology, Boston, MA, 1991. [ bib | .pdf ]
[Blostein1990] Dorothea Blostein and Lippold Haken. Template matching for rhythmic analysis of music keyboard input. In 10th International Conference on Pattern Recognition, pages 767-770, 1990. [ bib | DOI ]
[Diener1990] Glendon Ross Diener. Modeling music notation: A three-dimensional approach. PhD thesis, Stanford University, Palo Alto, CA, 1990. [ bib | .ps.Z ]
[Hewlett1990] Walter B. Hewlett and Eleanor Selfridge-Field, editors. Computing in Musicology: A Directory of Research, volume 6. Center for Computer, 1990. [ bib | .pdf ]
[Katayose1990] H. Katayose, T. Fukuoka, K. Takami, and S. Inokuchi. Expression extraction in virtuoso music performances. In 10th International Conference on Pattern Recognition, pages 780-784 vol.1, 1990. [ bib | DOI ]
[Clarke1989] Alastair T. Clarke, B. Malcom Brown, and M. P. Thorne. Coping with some really rotten problems in automatic music recognition. Microprocessing and Microprogramming, 27 (1): 547-550, 1989. ISSN 0165-6074. Fifteenth EUROMICRO Symposium on Microprocessing and Microprogramming. [ bib | DOI | http ]
[Bacon1988] Richard A. Bacon and Nicholas Paul Carter. Recognising music automatically. Physics Bulletin, 39 (7): 265, 1988. [ bib | http ]
[Carter1988] Nicholas Paul Carter, Richard A. Bacon, and T. Messenger. The acquisition, representation and reconstruction of printed music by computer: A review. Computers and the Humanities, 22 (2): 117-136, 1988. ISSN 1572-8412. [ bib | DOI | http ]
[Clarke1988] Alastair T. Clarke, B. Malcom Brown, and M. P. Thorne. Using a micro to automate data acquisition in music publishing. Microprocessing and Microprogramming, 24 (1): 549-553, 1988. ISSN 0165-6074. Supercomputers: Technology and Applications. [ bib | DOI | http ]
[Fujinaga1988] Ichiro Fujinaga. Optical Music Recognition using Projections. Master's thesis, McGill University, 1988. [ bib | .pdf ]
[Roach1988] JW W Roach and J E Tatem. Using domain knowledge in low-level visual processing to interpret handwritten music: an experiment. Pattern Recognition, 21 (1): 33-44, 1988. ISSN 0031-3203. [ bib | DOI | http ]
[Kato1987] Ichiro Kato, Sadamu Ohteru, Katsuhiko Shirai, Toshiaki Matsushima, Seinosuke Narita, Shigeki Sugano, Tetsunori Kobayashi, and Eizo Fujisawa. The robot musician 'wabot-2' (waseda robot-2). Robotics, 3 (2): 143-155, 1987. ISSN 0167-8493. Special Issue: Sensors. [ bib | DOI | http ]
[Kim1987] W. J. Kim, M. J. Chung, and Z. Bien. Recognition system for a printed music score. In TENCON 87- Computers and Communications Technology Toward 2000, pages 573-577, 1987. [ bib | http ]
[Sugano1987] Shigeki Sugano and Ichiro Kato. WABOT-2: Autonomous robot with dexterous finger-arm-Finger-arm coordination control in keyboard performance. In IEEE International Conference on Robotics and Automation, pages 90-97, 1987. [ bib | DOI ]
[Roads1986] Curtis Roads. The Tsukuba Musical Robot. Computer Music Journal, 10 (2): 39-43, 1986. ISSN 01489267, 15315169. [ bib | http ]
[Matsushima1985] T. Matsushima, I. Sonomoto, T. Harada, K. Kanamori, and S. Ohteru. Automated High Speed Recognition of Printed Music (WABOT-2 Vision System). In International Conference on Advanced Robotics, pages 477-482, 1985. [ bib | http ]
[Byrd1984] Donald Byrd. Music Notation by Computer. PhD thesis, Indiana University, 1984. [ bib | http ]
[Andronico1982] Alfio Andronico and Alberto Ciampa. On Automatic Pattern Recognition and Acquisition of Printed Music. In International Computer Music Conference, Venice, Italy, 1982. Michigan Publishing. [ bib | http ]
[Kassler1972] Michael Kassler. Optical Character-Recognition of Printed Music : A Review of Two Dissertations. Automatic Recognition of Sheet Music by Dennis Howard Pruslin ; Computer Pattern Recognition of Standard Engraved Music Notation by David Stewart Prerau. Perspectives of New Music, 11 (1): 250-254, 1972. [ bib | http ]
[Prerau1971] David S. Prerau. Computer pattern recognition of printed music. In Fall Joint Computer Conference, pages 153-162, 1971. [ bib ]
[Prerau1970] David S. Prerau. Computer pattern recognition of standard engraved music notation. PhD thesis, Massachusetts Institute of Technology, 1970. [ bib ]
[Pruslin1966] Dennis Howard Pruslin. Automatic Recognition of Sheet Music. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1966. [ bib ]
[RISM] Robert Eitner. Répertoire International des Sources Musicales. http://www.rism.info, 1952. [ bib | http ]

This file was generated by bibtex2html 1.96.